Araştırma Makalesi
BibTex RIS Kaynak Göster

Epoxy Based Metal And Metal Oxide Doped New Composite Neutron And Gamma Radiation Moderator Material

Yıl 2019, , 1442 - 1453, 31.12.2019
https://doi.org/10.18185/erzifbed.544340

Öz

In this
study, five different composite shield materials were developed and
produced.  Epoxy resin based different
proportions, materials such as [chromium oxide (Cr2O3),
lithium florür (LiF), nickel oxide (NiO), bismuth oxide (Bi2O3),
manganese oxide (MnO), copper oxide (CuO), titanium oxide (TiO2),
cobalt oxide (CoO), gadolinium oxide (Gd2O3), selit (CaWO4),
iron oxide (Fe2O3), lead oxide (PbO)] were used on
production.
The GEANT4 code of the Monte
Carlo simulation program was used in determining mixing ratios. The total
macroscopic cross section, mean free path and transmission neutron number were
determined for fast neutron radiation by using GEANT4 simulation code. The mass
attenuation coefficient and half-value layer (HVL) were calculated for gamma
radiation by using WinXCom software. Experimental absorbed dose measurement was
carried out and in these measurements 241Am-Be neutron source with
74 GBq activity which average neutron energy is approximately 4.5 MeV and BF3
gas detector were used.  Both simulation
and experimental measurements were compared with paraffin, conventional
concrete. It was found that the new composite shielding material absorbed
radiation much better than these reference materials. It has been suggested
that this new radiation shielding composite material can be used in areas such
as nuclear medicine, transport and storage of radioactive waste, nuclear power
plants and as shield material for both neutron and gamma radiation. 

Kaynakça

  • Krocher, J.F., Browman R.E., 1984. (Eds.) Reinhold New York.
  • Massingilljr, J.L., Bauer, R.S., ‘‘Applications of Epoxy Resins.’’ Applied Polymer Science 21'' Century
  • Tjong S.C., 2010. Electrical and dielectric behavior of carbon nanotube-filled polymer composites. Physical Properties and Applications of Polymer Nano composites.
  • Vovchenko L., Matzui L., Oliynyk V., Launetz V., Lazarenko A., 2008. Nanocarbon-epoxy composites as electromagnetic shielding materials. Mol. Cryst. Liq. Cryst. 497, 378–386. Zhong, W. H., Sui, G., Jana, S., Miller J., 2009.Cosmic radiation shielding tests for UHMWPE fiber=nano-epoxy composites.’’ Compos. Sci. Technol. 69, 2093–2097.
  • Li, Z., F, x., Xue, X., Jiang, T., Yang, H., Zhou, M., 2011. Study on the properties of boron-containing ores=epoxy composites for slow neutron shielding. Adv. Mater. Res. 203, 2767–2771.
  • Korkut, T., Gencel, O., Kam, Erol., Brostow W., 2013. X-Ray, Gamma, and Neutron Radiation Tests on Epoxy-Ferro chromium Slag Composites by Experiments and Monte Carlo Simulations. International Journal of Polymer Analysis and Characterization. 18, 224-231. Chang, L., Zhang Y., Liu, Y., Fang, J., Luan, W., Yang, X., Zhang, W., 2015. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 356–357, 88-93.
  • Canel, A., Korkut, H., Korkut, T., 2019. Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials.’’ Radiation Physics and Chemistry 158, 13-16.
  • Fang, L., Zheng, L., Ning, W., Zhao, Z., Wang, L., 2018. Effects of γ-Ray Irradiation on the Fatigue Strength, Thermal Conductivities and Thermal Stabilities of the Glass Fibres/Epoxy Resins Composites.’’ Acta Metallurgica Sinica. 31, 105–112.
  • Agostinelli, S. et al., 2003. Geant4 simulation toolkit Nuclear Instruments and Methods in Physics Research A, 506, 250- 303.
  • Allison, J., Amako, K., et al., 2006. Geant4 developments and applications.IEEE Trans. Nucl. Sci. 53, 270–278. Mclane, V., Charles, L., Dunford, P., Rose, F., 1988. Neutron Cross Sections.’’ ISBN 978-0-12-484, 220-5.
  • Rinard, P., 1991. Neutron Interactions with Matter Passive Nondestructive Assay of Nuclear Materials.
  • Berger, M.J., Hubbell, J.H., 1987. XCOM. Photon Cross Sections Database, http://physics.nist.gov/xcom National Institute of Standard Sand Technology. Gaithersburg, MD 20899, USA. as NBSIR 87-3597 “XCOM:Photon Cross Sections on a Personal Computer. 99.
  • Singh, VP., Badiger, N.M., Chanthima, N., Kaewkhao, J., 2014. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth boro silicate glasses.’’ Radiat. Phys. Chem. 14- 21.
  • Sayyed, M.I., Akman, F., Turan, V., Araz, A., 2019. Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta; 107, 83- 93.
  • Sayyed, M.I., 2017. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions.’’ Journal of Alloys and Compounds. 695, 3191-3197. Ott, K. O., W A., 1989. Bezella Introductory Nuclear Reactor Statics.’’ American Nuclear Society, Revised edition ISBN: 0 894, 48033-2.

Epoksi Bazlı Metal Ve Metal Oksit Katkılı Yeni Kompozit Nötron Ve Gamma Radyasyon Moderatör Malzemesi

Yıl 2019, , 1442 - 1453, 31.12.2019
https://doi.org/10.18185/erzifbed.544340

Öz



Bu çalışmada beş farklı komposit zırh malzemesi geliştirildi ve üretildi.
Üretimlerde epoksi reçinesi taban malzeme olarak farklı özelliklere sahip [krom
oksit (Cr2O3), lityum florür (LiF), nikel oksit (NiO),
bizmut oksit (Bi2O3), manganez oksit (MnO), bakır oksit
(CuO), titanyum oksit (TiO2), kobalt oksit (CoO), gadolinyum oksit
(Gd2O3), şelit (CaWO4), demir oksit (Fe2O3),
kurşun oksit (PbO)] gibi malzemeler kullanılmıştır.



Karışım oranları Monte Carlo Simülasyon
programının GEANT4 kodu kullanılarak belirlenmiştir. Hızlı nötronlar için
Toplam makroskopik tesir kesiti, ortalama serbest yol ve geçen nötron sayısı
GEANT4 simülasyon kodu kullanılarak belirlendi.
WinXCom yazılımı kullanılarak gamma radyasyonu için kütle zayıflama
katsayısı ve yarı değer kalınlıkları (HVL) hesaplandı.
Deneysel absorbtion doz ölçümleri yapıldı ve bu ölçümlerde ortalama nötron
enerjisinin yaklaşık 4.5 MeV, 74 GBq aktiviteye sahip 241Am-Be
nötron kaynağı ve BF3 gazlı dedektör kullanıldı.
Hem simülasyon hem de deneysel ölçümler, geleneksel beton ve parafin ile
karşılaştırıldı.
Yeni kompozit zırh
malzemelerinin bu referans malzemelerden çok daha iyi radyasyon emdiği tespit
edildi.
Bu yeni radyasyon zırh kompozit malzemelerin
nükleer tıpta, radyoaktif atıkların taşınması ve depolanmasında ve nükleer
santral gibi alanlarda, hem nötron hem de gama radyasyonu için kalkan malzemesi
olarak kullanılabileceği önerildi.



Kaynakça

  • Krocher, J.F., Browman R.E., 1984. (Eds.) Reinhold New York.
  • Massingilljr, J.L., Bauer, R.S., ‘‘Applications of Epoxy Resins.’’ Applied Polymer Science 21'' Century
  • Tjong S.C., 2010. Electrical and dielectric behavior of carbon nanotube-filled polymer composites. Physical Properties and Applications of Polymer Nano composites.
  • Vovchenko L., Matzui L., Oliynyk V., Launetz V., Lazarenko A., 2008. Nanocarbon-epoxy composites as electromagnetic shielding materials. Mol. Cryst. Liq. Cryst. 497, 378–386. Zhong, W. H., Sui, G., Jana, S., Miller J., 2009.Cosmic radiation shielding tests for UHMWPE fiber=nano-epoxy composites.’’ Compos. Sci. Technol. 69, 2093–2097.
  • Li, Z., F, x., Xue, X., Jiang, T., Yang, H., Zhou, M., 2011. Study on the properties of boron-containing ores=epoxy composites for slow neutron shielding. Adv. Mater. Res. 203, 2767–2771.
  • Korkut, T., Gencel, O., Kam, Erol., Brostow W., 2013. X-Ray, Gamma, and Neutron Radiation Tests on Epoxy-Ferro chromium Slag Composites by Experiments and Monte Carlo Simulations. International Journal of Polymer Analysis and Characterization. 18, 224-231. Chang, L., Zhang Y., Liu, Y., Fang, J., Luan, W., Yang, X., Zhang, W., 2015. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 356–357, 88-93.
  • Canel, A., Korkut, H., Korkut, T., 2019. Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials.’’ Radiation Physics and Chemistry 158, 13-16.
  • Fang, L., Zheng, L., Ning, W., Zhao, Z., Wang, L., 2018. Effects of γ-Ray Irradiation on the Fatigue Strength, Thermal Conductivities and Thermal Stabilities of the Glass Fibres/Epoxy Resins Composites.’’ Acta Metallurgica Sinica. 31, 105–112.
  • Agostinelli, S. et al., 2003. Geant4 simulation toolkit Nuclear Instruments and Methods in Physics Research A, 506, 250- 303.
  • Allison, J., Amako, K., et al., 2006. Geant4 developments and applications.IEEE Trans. Nucl. Sci. 53, 270–278. Mclane, V., Charles, L., Dunford, P., Rose, F., 1988. Neutron Cross Sections.’’ ISBN 978-0-12-484, 220-5.
  • Rinard, P., 1991. Neutron Interactions with Matter Passive Nondestructive Assay of Nuclear Materials.
  • Berger, M.J., Hubbell, J.H., 1987. XCOM. Photon Cross Sections Database, http://physics.nist.gov/xcom National Institute of Standard Sand Technology. Gaithersburg, MD 20899, USA. as NBSIR 87-3597 “XCOM:Photon Cross Sections on a Personal Computer. 99.
  • Singh, VP., Badiger, N.M., Chanthima, N., Kaewkhao, J., 2014. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth boro silicate glasses.’’ Radiat. Phys. Chem. 14- 21.
  • Sayyed, M.I., Akman, F., Turan, V., Araz, A., 2019. Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta; 107, 83- 93.
  • Sayyed, M.I., 2017. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions.’’ Journal of Alloys and Compounds. 695, 3191-3197. Ott, K. O., W A., 1989. Bezella Introductory Nuclear Reactor Statics.’’ American Nuclear Society, Revised edition ISBN: 0 894, 48033-2.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bünyamin Aygün 0000-0002-9384-1540

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Aygün, B. (2019). Epoxy Based Metal And Metal Oxide Doped New Composite Neutron And Gamma Radiation Moderator Material. Erzincan University Journal of Science and Technology, 12(3), 1442-1453. https://doi.org/10.18185/erzifbed.544340