Araştırma Makalesi
BibTex RIS Kaynak Göster

e^(ax+by) Yoğunluklu E^3_1 Uzayında Sıfır Ağırlıklı Eğriliğe Sahip Null Olmayan Düzlemsel Eğrilerin Oluşturduğu Yüzeyler

Yıl 2020, , 45 - 55, 28.02.2020
https://doi.org/10.18185/erzifbed.601728

Öz

Bu çalışmada, e^(ax+by) yoğunluklu E^3_1  Lorentz-Minkowski uzayında, ikisi aynı anda sıfır olmayan a ve b sabitlerinin durumlarına göre, ağırlıklı eğrilikleri sıfır olan spacelike ve timelike düzlemsel eğriler yardımıyla oluşturulan dönel yüzeyler ve regle yüzeyler çalışılmıştır.

Destekleyen Kurum

İnönü Üniversitesi BAP Birimi

Proje Numarası

FDK-2018-1349

Teşekkür

İnönü Üniversitesi BAP Birimine desteklerinden dolayı teşekkür ederiz.

Kaynakça

  • [1] Abdel-Aziz, H.S. and Saad, M.K., 2015, “Smarandache Curves of Some Special Curves in the Galilean 3-Space”, Honam Mathematical Journal, 37(2), 253-264.
  • [2] Albujer, A.L. and Caballero, M., 2017, “Geometric Properties of Surfaces with the Same Mean Curvature in R^3 and L^3”, J. Math. Anal. Appl., 445, 1013-1024.
  • [3] Ali, A.T., 2010, “Special Smarandache Curves in the Euclidean Space”, Int. J. Math. Comb., 2, 30-36.
  • [4] Ali, A.T., 2012, “Position Vectors of curves in the Galilean Space G_3”, Matematnykn Bechnk, 64(3), 200–210.
  • [5] Baikoussis, C. and Blair, D.E., 1992, “On the Gauss map of ruled surfaces”, Glasgow Math. J., 34, 355-359.
  • [6] Belarbi, L. and Belkhelfa, M., 2012, “Surfaces in R^3 with Density”, i-manager’s Journal on Mathematics, 1(1), 34-48.
  • [7] Choi, J.H., Kim, Y.H. and Ali, A.T., 2012, “Some associated curves of Frenet non-lightlike curves in E_1^3”, J. Math. Anal. Appl., 394, 712–723.
  • [8] Corwin, I., Hoffman, N., Hurder, S., Sesum, V. and Xu, Y., 2006, “Differential geometry of manifolds with density”, Rose-Hulman Und. Math. J., 7(1), 1-15.
  • [9] Dillen, F., Pas, J. and Verstraelen, L., “On the Gauss map of surfaces of revolution”, Bull. Inst. Math. Acad. Sinica, 18, 239-246.
  • [10] Dillen, F. and Kühnel, W., 1999, “Ruled Weingarten surfaces in Minkowski 3-space”, Manuscripta Math., 98, 307–320.
  • [11] Divjak, B., 1998, “Curves in Pseudo-Galilean Geometry”, Annales Univ. Sci. Budapest., 41, 117-128.
  • [12] Ekici, C. and Öztürk, H., 2013, “On Time-Like Ruled Surfaces in Minkowski 3-Space”, Universal Journal of Applied Science, 1(2), 56-63.
  • [13] Gromov, M., 2003, “Isoperimetry of waists and concentration of maps”, Geom. Func. Anal., 13, 178-215.
  • [14] Hieu, D.T. and Nam, T.L., 2013, “The classification of constant weighted curvature curves in the plane with a log-linear density”, Commun. Pure Appl. Anal., 13, 1641-1652.
  • [15] Kazan, A. and Karadağ, H.B., 2011, “A Classification of Surfaces of Revolution in Lorentz-Minkowski Space”, Int. J. Contemp. Math. Sciences, Vol. 6, no. 39, 1915-1928.
  • [16] Kazan, A. and Karadağ, H.B., 2018, “Weighted Minimal and Weighted Flat Surfaces of Revolution in Galilean 3-Space with Density”, Int. J. Anal. Appl., 16(3), 414-426.
  • [17] López, R., 2014, “Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space”, Int. Electron. J. Geom., 1, 44–107.
  • [18] Morgan, F., 2005, “Manifolds with Density”, Not. Amer. Math. Soc., 52(8) ,853-858.
  • [19] Morgan, F., 2006, “Myers’ Theorem With Density”, Kodai Math. J., 29, 455-461.
  • [20] Nam, T.L., 2017, “Some results on curves in the plane with log-linear density”, Asian-European J. of Math., 10(2), 1-8.
  • [21] Şenyurt, S., Altun, Y. and Cevahir, C., 2020, “Smarandache curves for spherical indicatrix of the Bertrand curves pair”, Boletim da Sociedade Paranaense de Matematica, 38(2), In Press, 27-39.
  • [22] Turgut, A. and Hacısalihog ̆lu, H.H., 1998, “Timelike Ruled Surfaces in the Minkowski 3-Space-II”, Turk. J. of Math., 22, 33-46.
  • [23] Turgut, M. and Yilmaz, S., 2008, “Smarandache Curves in Minkowski Space-time”, Int. J. Math. Comb., 3, 51-55.
  • [24] Yoon, D.W., Kim, D-S., Kim, Y.H. and Lee, J.W., 2017, “Constructions of Helicoidal Surfaces in Euclidean Space with Density”, Symmetry, 173, 1-9.
  • [25] Yoon, D.W., 2017, “Weighted Minimal Translation Surfaces in Minkowski 3-space with Density”, Int. J. Geom. Methods Mod. Phys.,, 14(12), 1-10.
  • [26] Yoon, D.W. and Yüzbaşı, Z.K., 2018, “Weighted Minimal Affine Translation Surfaces in Euclidean Space with Density”, Int. J. Geom. Methods Mod. Phys., 15(11).

Surfaces Constructed by Non-Null Planar Curves with Vanishing Weighted Curvature in 𝑬𝟏𝟑 with Density 𝒆𝒂𝒙+𝒃𝒚

Yıl 2020, , 45 - 55, 28.02.2020
https://doi.org/10.18185/erzifbed.601728

Öz

In the present paper, the surfaces of revolution and ruled surfaces which are constructed with the aid of spacelike and timelike planar curves with vanishing weighted curvatures in Lorentz-Minkowski space 𝐸13 with density 𝑒𝑎𝑥+𝑏𝑦 according to the cases of not all zero constants 𝑎 and 𝑏 are studied.

Proje Numarası

FDK-2018-1349

Kaynakça

  • [1] Abdel-Aziz, H.S. and Saad, M.K., 2015, “Smarandache Curves of Some Special Curves in the Galilean 3-Space”, Honam Mathematical Journal, 37(2), 253-264.
  • [2] Albujer, A.L. and Caballero, M., 2017, “Geometric Properties of Surfaces with the Same Mean Curvature in R^3 and L^3”, J. Math. Anal. Appl., 445, 1013-1024.
  • [3] Ali, A.T., 2010, “Special Smarandache Curves in the Euclidean Space”, Int. J. Math. Comb., 2, 30-36.
  • [4] Ali, A.T., 2012, “Position Vectors of curves in the Galilean Space G_3”, Matematnykn Bechnk, 64(3), 200–210.
  • [5] Baikoussis, C. and Blair, D.E., 1992, “On the Gauss map of ruled surfaces”, Glasgow Math. J., 34, 355-359.
  • [6] Belarbi, L. and Belkhelfa, M., 2012, “Surfaces in R^3 with Density”, i-manager’s Journal on Mathematics, 1(1), 34-48.
  • [7] Choi, J.H., Kim, Y.H. and Ali, A.T., 2012, “Some associated curves of Frenet non-lightlike curves in E_1^3”, J. Math. Anal. Appl., 394, 712–723.
  • [8] Corwin, I., Hoffman, N., Hurder, S., Sesum, V. and Xu, Y., 2006, “Differential geometry of manifolds with density”, Rose-Hulman Und. Math. J., 7(1), 1-15.
  • [9] Dillen, F., Pas, J. and Verstraelen, L., “On the Gauss map of surfaces of revolution”, Bull. Inst. Math. Acad. Sinica, 18, 239-246.
  • [10] Dillen, F. and Kühnel, W., 1999, “Ruled Weingarten surfaces in Minkowski 3-space”, Manuscripta Math., 98, 307–320.
  • [11] Divjak, B., 1998, “Curves in Pseudo-Galilean Geometry”, Annales Univ. Sci. Budapest., 41, 117-128.
  • [12] Ekici, C. and Öztürk, H., 2013, “On Time-Like Ruled Surfaces in Minkowski 3-Space”, Universal Journal of Applied Science, 1(2), 56-63.
  • [13] Gromov, M., 2003, “Isoperimetry of waists and concentration of maps”, Geom. Func. Anal., 13, 178-215.
  • [14] Hieu, D.T. and Nam, T.L., 2013, “The classification of constant weighted curvature curves in the plane with a log-linear density”, Commun. Pure Appl. Anal., 13, 1641-1652.
  • [15] Kazan, A. and Karadağ, H.B., 2011, “A Classification of Surfaces of Revolution in Lorentz-Minkowski Space”, Int. J. Contemp. Math. Sciences, Vol. 6, no. 39, 1915-1928.
  • [16] Kazan, A. and Karadağ, H.B., 2018, “Weighted Minimal and Weighted Flat Surfaces of Revolution in Galilean 3-Space with Density”, Int. J. Anal. Appl., 16(3), 414-426.
  • [17] López, R., 2014, “Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space”, Int. Electron. J. Geom., 1, 44–107.
  • [18] Morgan, F., 2005, “Manifolds with Density”, Not. Amer. Math. Soc., 52(8) ,853-858.
  • [19] Morgan, F., 2006, “Myers’ Theorem With Density”, Kodai Math. J., 29, 455-461.
  • [20] Nam, T.L., 2017, “Some results on curves in the plane with log-linear density”, Asian-European J. of Math., 10(2), 1-8.
  • [21] Şenyurt, S., Altun, Y. and Cevahir, C., 2020, “Smarandache curves for spherical indicatrix of the Bertrand curves pair”, Boletim da Sociedade Paranaense de Matematica, 38(2), In Press, 27-39.
  • [22] Turgut, A. and Hacısalihog ̆lu, H.H., 1998, “Timelike Ruled Surfaces in the Minkowski 3-Space-II”, Turk. J. of Math., 22, 33-46.
  • [23] Turgut, M. and Yilmaz, S., 2008, “Smarandache Curves in Minkowski Space-time”, Int. J. Math. Comb., 3, 51-55.
  • [24] Yoon, D.W., Kim, D-S., Kim, Y.H. and Lee, J.W., 2017, “Constructions of Helicoidal Surfaces in Euclidean Space with Density”, Symmetry, 173, 1-9.
  • [25] Yoon, D.W., 2017, “Weighted Minimal Translation Surfaces in Minkowski 3-space with Density”, Int. J. Geom. Methods Mod. Phys.,, 14(12), 1-10.
  • [26] Yoon, D.W. and Yüzbaşı, Z.K., 2018, “Weighted Minimal Affine Translation Surfaces in Euclidean Space with Density”, Int. J. Geom. Methods Mod. Phys., 15(11).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Altın 0000-0001-5544-5910

Ahmet Kazan 0000-0002-1959-6102

H.bayram Karadağ 0000-0001-6474-877X

Proje Numarası FDK-2018-1349
Yayımlanma Tarihi 28 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Altın, M., Kazan, A., & Karadağ, H. (2020). e^(ax+by) Yoğunluklu E^3_1 Uzayında Sıfır Ağırlıklı Eğriliğe Sahip Null Olmayan Düzlemsel Eğrilerin Oluşturduğu Yüzeyler. Erzincan University Journal of Science and Technology, 13(ÖZEL SAYI I), 45-55. https://doi.org/10.18185/erzifbed.601728