Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Boyutlu Periyodik Kaviteler İçeren Fononik Kristaller ile Akustik Ekle-Bırak Filtresi Tasarımı

Yıl 2019, , 1678 - 1689, 31.12.2019
https://doi.org/10.18185/erzifbed.649664

Öz

Katı yüzeyde bir boyutta
periyodik silindirik kaviteler içeren dalga kılavuzları ve halka çınlaç
kullanılarak tasarlanan bir akustik ekle-bırak filtresinin hava ortamında
çalışması ve performansı sayısal olarak incelenmiştir. 20 kHz civarında çalışma
hedeflendiğinde, periyodu 5.0 mm olan 2.0 mm yarıçaplı kaviteler yüzeye
merkezlerinden itibaren yarıçapın %30’u kadar gömüldüğünde, Sonlu Elemanlar
Yöntemi kullanılarak yapılan band yapısı hesaplamaları sonucunda hedef çalışma
frekansını kapsayan geniş dispersiyon sergileyen yüzey bandı belirlenmiştir.
Kaviteye ve komşuluğundaki dar bir hava bölgesine lokalize olan etkileşimli
Bloch yüzey akustik dalgaları, birbirine bakan ve periyodun 1.5 katı uzaklıkta
iki yüzey için birbirinden ayrışan ve belirli bir frekans aralığında örtüşen
iki adet yüzey bandındaki simetrik ve asimetrik kipler halini almaktadır. Dalga
kılavuzları arasına her bir kılavuz ile mesafesi 1.5 periyot olan ve toplam 85
kavite içeren 67.6 mm yarıçaplı dairesel halka çınlaç konulduğunda, frekansa bağlı
Sonlu Elemanlar Yöntemi simülasyonları ile 20 kHz frekansında bırak portu
çıkışında maksimum gözlenirken, direkt ve ekle portlarından minimum çıkış
belirlenmiştir. Port çıkışları frekansa bağlı olarak dalgalı seyir izlemekte ve
gözlenen pikler artan frekans ile sıklaşmaktadır. 22.08 kHz frekansında bırak
portu çıkışında genişliği 57 Hz ve kalite faktörü 387 olan pik gözlenmektedir.
Önerilen akustik ekle-bırak filtresi akustik sinyal işleme, akustik mantık ve
ultrasonik sensörler gibi alanlarda kullanılabilir.

Teşekkür

Çalışmada hesaplama kaynaklarını kullanma imkanı veren Prof. Dr. Ahmet ÇİÇEK ve Doç. Dr. Nurettin KÖRÖZLÜ’ye teşekkür ederim.

Kaynakça

  • Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., ve Garcia-Vidal, F. J. 2007. “Collimation of sound assisted by acoustic surface waves”, Nature Physics 3(12), 851.
  • Christensen, J., Martín-Moreno, L., ve Garcia-Vidal, F. J. 2010. “Enhanced acoustical transmission and beaming effect through a single aperture”, Physical Review B, 81(17), 174104.
  • Cicek, A., Arslan, Y., Trak, D., Okay, F. C., Kaya, O. A., Korozlu, N., ve Ulug, B. 2019. “Gas sensing through evanescent coupling of spoof surface acoustic waves”, Sensors and Actuators B: Chemical, 288, 259-265.
  • COMSOL, Inc. 2019. COMSOL Multiphysics Modeling Software, URL: https://comsol.com , Son erişim tarihi: 21/11/2019.
  • Cui, J., Liu, J., Mao, Y., Li, Y., ve Liu, X. 2017. “Realization of manipulating acoustic surface waves radiation direction with rectangular-groove structure”, AIP Advances, 7(11), 115301.
  • He, Z., Jia, H., Qiu, C., Ye, Y., Hao, R., Ke, M., ve Liu, Z. 2011. “Nonleaky surface acoustic waves on a textured rigid surface”, Physical Review B, 83(13), 132101.
  • Jia, H., Lu, M., Ni, X., Bao, M., ve Li, X. 2014. “Spatial separation of spoof surface acoustic waves on the graded groove grating”, Journal of Applied Physics, 116(12), 124504.
  • Jia, H., Lu, M., Wang, Q., Bao, M., ve Li, X. 2013. “Subwavelength imaging through spoof surface acoustic waves on a two-dimensional structured rigid surface”, Applied Physics Letters, 103(10), 103505.
  • Kelders, L., Allard, J. F., ve Lauriks, W. 1998. “Ultrasonic surface waves above rectangular-groove gratings”, The Journal of the Acoustical Society of America, 103(5), 2730-2733.
  • Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., ve Laude, V. 2006. “Complete band gaps in two-dimensional phononic crystal slabs”, Physical Review E, 74(4), 046610.
  • Korozlu, N., Kaya, O. A., Cicek, A., ve Ulug, B. 2019. “Self-collimation and slow-sound effect of spoof surface acoustic waves”, Journal of Applied Physics, 125(7), 074901.
  • Lu, J., Qiu, C., Ke, M., ve Liu, Z. 2015. “Directional excitation of the designer surface acoustic waves”, Applied Physics Letters, 106(20), 201901.
  • Mai, T. T., Hsiao, F. L., Lee, C., Xiang, W., Chen, C. C., ve Choi, W. K. 2011. “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors”, Sensors and Actuators A: Physical, 165(1), 16-25.
  • Qiang, Z., Zhou, W., ve Soref, R. A. 2007. “Optical add-drop filters based on photonic crystal ring resonators”, Optics Express, 15(4), 1823-1831.
  • Rostami-Dogolsara, B., Moravvej-Farshi, M. K., ve Nazari, F. 2016. “Acoustic add-drop filters based on phononic crystal ring resonators”, Physical Review B, 93(1), 014304.
  • Sarkaleh, A. K., Lahijani, B. V., Saberkari, H., ve Esmaeeli, A. 2017. “Optical ring resonators: a platform for biological sensing applications”, Journal of Medical Signals and Sensors, 7(3), 185.
  • Schwan, L., Geslain, A., Romero-García, V., ve Groby, J. P. 2017. “Complex dispersion relation of surface acoustic waves at a lossy metasurface”, Applied Physics Letters, 110(5), 051902.
  • Torrent, D., ve Sánchez-Dehesa, J. 2012. “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves”, Physical Review Letters, 108(17), 174301.
  • Xie, S., Ouyang, S., He, Z., Wang, X., Deng, K., ve Zhao, H. 2018. “Bending and splitting of spoof surface acoustic waves through structured rigid surface”, Results in Physics, 8, 52-56.
  • Yaffe, H. H., Henry, C. H., Serbin, M. R., ve Cohen, L. G. 1994. “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology”, Journal of Lightwave Technology, 12(6), 1010-1014.
  • Ye, Y., Ke, M., Li, Y., Wang, T., ve Liu, Z. 201). “Focusing of spoof surface-acoustic-waves by a gradient-index structure”, Journal of Applied Physics, 114(15), 154504.
  • Zhou, Y., Lu, M. H., Feng, L., Ni, X., Chen, Y. F., Zhu, Y. Y., Zhu, S. N., ve Ming, N. B. 2010. “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound”, Physical Review Letters, 104(16), 164301.
  • Zhu, J., Chen, Y., Zhu, X., Garcia-Vidal, F. J., Yin, X., Zhang, W., ve Zhang, X. 2013. “Acoustic rainbow trapping”, Scientific Reports, 3, 1728.

Acoustic Add-Drop Filter Design With Phononic Crystals Containing One-Dimensional Periodic Cavities

Yıl 2019, , 1678 - 1689, 31.12.2019
https://doi.org/10.18185/erzifbed.649664

Öz

Operation
and performance of an acoustic add-drop filter which incorporates
one-dimensional cylindrical periodic cavities on a solid surface in air
environment are numerically investigated. In case of 20 kHz target operation
frequency, a surface band covering this frequency with broad dispersion is
determined through band structure calculations via the Finite-Element Method
when cavities with 5.0 mm period and 2.0 mm radii are embedded into the surface
by 30% from their centers. Interacting Bloch surface acoustic waves localized
in the cavity and neighboring narrow air region become symmetric and asymmetric
modes of two distinct surface bands overlapping in a particular frequency range
for two facing surfaces 1.5 periods apart. When a circular ring resonator with
67.6 mm radius, incorporating 85 cavities, is placed between the waveguides so
that it is 1.5 period away from each, frequency-domain Finite-Element
simulations at 20 kHz reveal that drop port output maximum is observed, whereas
through and add outputs are minimum. Port outputs exhibit a fluctuating
behavior where the observed peaks appear more frequently with increasing
frequency. A peak of the drop port with 57 Hz width and a quality factor of 387
is observed at 22.08 kHz. The proposed acoustic add-drop filter can be utilized
in areas such as acoustic signal processing, acoustic logic and ultrasonic
sensors. 

Kaynakça

  • Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., ve Garcia-Vidal, F. J. 2007. “Collimation of sound assisted by acoustic surface waves”, Nature Physics 3(12), 851.
  • Christensen, J., Martín-Moreno, L., ve Garcia-Vidal, F. J. 2010. “Enhanced acoustical transmission and beaming effect through a single aperture”, Physical Review B, 81(17), 174104.
  • Cicek, A., Arslan, Y., Trak, D., Okay, F. C., Kaya, O. A., Korozlu, N., ve Ulug, B. 2019. “Gas sensing through evanescent coupling of spoof surface acoustic waves”, Sensors and Actuators B: Chemical, 288, 259-265.
  • COMSOL, Inc. 2019. COMSOL Multiphysics Modeling Software, URL: https://comsol.com , Son erişim tarihi: 21/11/2019.
  • Cui, J., Liu, J., Mao, Y., Li, Y., ve Liu, X. 2017. “Realization of manipulating acoustic surface waves radiation direction with rectangular-groove structure”, AIP Advances, 7(11), 115301.
  • He, Z., Jia, H., Qiu, C., Ye, Y., Hao, R., Ke, M., ve Liu, Z. 2011. “Nonleaky surface acoustic waves on a textured rigid surface”, Physical Review B, 83(13), 132101.
  • Jia, H., Lu, M., Ni, X., Bao, M., ve Li, X. 2014. “Spatial separation of spoof surface acoustic waves on the graded groove grating”, Journal of Applied Physics, 116(12), 124504.
  • Jia, H., Lu, M., Wang, Q., Bao, M., ve Li, X. 2013. “Subwavelength imaging through spoof surface acoustic waves on a two-dimensional structured rigid surface”, Applied Physics Letters, 103(10), 103505.
  • Kelders, L., Allard, J. F., ve Lauriks, W. 1998. “Ultrasonic surface waves above rectangular-groove gratings”, The Journal of the Acoustical Society of America, 103(5), 2730-2733.
  • Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., ve Laude, V. 2006. “Complete band gaps in two-dimensional phononic crystal slabs”, Physical Review E, 74(4), 046610.
  • Korozlu, N., Kaya, O. A., Cicek, A., ve Ulug, B. 2019. “Self-collimation and slow-sound effect of spoof surface acoustic waves”, Journal of Applied Physics, 125(7), 074901.
  • Lu, J., Qiu, C., Ke, M., ve Liu, Z. 2015. “Directional excitation of the designer surface acoustic waves”, Applied Physics Letters, 106(20), 201901.
  • Mai, T. T., Hsiao, F. L., Lee, C., Xiang, W., Chen, C. C., ve Choi, W. K. 2011. “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors”, Sensors and Actuators A: Physical, 165(1), 16-25.
  • Qiang, Z., Zhou, W., ve Soref, R. A. 2007. “Optical add-drop filters based on photonic crystal ring resonators”, Optics Express, 15(4), 1823-1831.
  • Rostami-Dogolsara, B., Moravvej-Farshi, M. K., ve Nazari, F. 2016. “Acoustic add-drop filters based on phononic crystal ring resonators”, Physical Review B, 93(1), 014304.
  • Sarkaleh, A. K., Lahijani, B. V., Saberkari, H., ve Esmaeeli, A. 2017. “Optical ring resonators: a platform for biological sensing applications”, Journal of Medical Signals and Sensors, 7(3), 185.
  • Schwan, L., Geslain, A., Romero-García, V., ve Groby, J. P. 2017. “Complex dispersion relation of surface acoustic waves at a lossy metasurface”, Applied Physics Letters, 110(5), 051902.
  • Torrent, D., ve Sánchez-Dehesa, J. 2012. “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves”, Physical Review Letters, 108(17), 174301.
  • Xie, S., Ouyang, S., He, Z., Wang, X., Deng, K., ve Zhao, H. 2018. “Bending and splitting of spoof surface acoustic waves through structured rigid surface”, Results in Physics, 8, 52-56.
  • Yaffe, H. H., Henry, C. H., Serbin, M. R., ve Cohen, L. G. 1994. “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology”, Journal of Lightwave Technology, 12(6), 1010-1014.
  • Ye, Y., Ke, M., Li, Y., Wang, T., ve Liu, Z. 201). “Focusing of spoof surface-acoustic-waves by a gradient-index structure”, Journal of Applied Physics, 114(15), 154504.
  • Zhou, Y., Lu, M. H., Feng, L., Ni, X., Chen, Y. F., Zhu, Y. Y., Zhu, S. N., ve Ming, N. B. 2010. “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound”, Physical Review Letters, 104(16), 164301.
  • Zhu, J., Chen, Y., Zhu, X., Garcia-Vidal, F. J., Yin, X., Zhang, W., ve Zhang, X. 2013. “Acoustic rainbow trapping”, Scientific Reports, 3, 1728.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Biçer 0000-0002-7743-6078

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Biçer, A. (2019). Bir Boyutlu Periyodik Kaviteler İçeren Fononik Kristaller ile Akustik Ekle-Bırak Filtresi Tasarımı. Erzincan University Journal of Science and Technology, 12(3), 1678-1689. https://doi.org/10.18185/erzifbed.649664