Araştırma Makalesi
BibTex RIS Kaynak Göster

The Study of Pycnogenol Protective Effect on Glutamate Induced Neurotoxicity: In Vitro Evaluation

Yıl 2021, , 864 - 873, 31.08.2021
https://doi.org/10.18185/erzifbed.877837

Öz

Excessive release of the excitatory neurotransmitter glutamate is thought to be a major contributor to the pathophysiology of numerous neurodegenerative including epilepsy and Alzheimer's disease. Therefore, it is important to investigate for compounds that protecting neuronal cells against glutamate-induced cytotoxicity. Pycnogenol®, a standardized French maritime pine bark extract, has strong antioxidant activity which primarily comprises phenolic compounds and flavonoids. Therefore, in the present study, inducing glutamate toxicity in primary cultured cortical neurons, we studied the neuroprotective effects of bioflavonoid compound Pycnogenol an extract of Pinus maritime bark. The cortical neuron cells were exposed to 10-5 mM glutamate for 30 min to induce excitotoxicity. Then, different concentrations (10-1 - 10-5) of PYC were added to the cells for 24 hours. The cell viability was determined using MTT assay. To investigate oxidative damage, the total antioxidant status (TAS)- total antioxidant status (TOS) analysis were used. According to MTT analysis results, it was found that 10-1 and 10-2 pycnogenol groups significantly attenuated the glutamate excitotoxicity induced cell damage. Furthermore, TAS-TOS analysis showed a correlation with MTT result. According to the results of this study, pycnogenol has the potential to be used as a therapeutic agent against glutamate excitotoxicity.

Kaynakça

  • Referans1: Chávez-Castillo, M., Rojas, M., Bautista, J., 2017. “Excitotoxicity: an organized crime at the cellular level”, Archıvos De Medıcına, 8(3), 193.
  • Referans2: Cui, Y., Amarsanaa, K., Lee, J. H., Rhim, J. K., Kwon, J. M., Kim, S. H., Eun, S. Y., 2019. “Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway”, The Korean Journal of Physiology & Pharmacology, 23(2), 121-130.
  • Referans3: Dong, X. X., Wang, Y., Qin, Z. H., 2009. “Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases”, Acta Pharmacologica Sinica, 30(4), 379-387.
  • Referans4: Dvořáková, M., Sivoňová, M., Trebatická, J., Škodáček, I., Waczuliková, I., Muchová, J., Ďuračková, Z., 2006. “The effect of polyphenolic extract from pine bark, Pycnogenol® on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD)”, Redox Report, 11(4), 163-172.
  • Referans5: Elmann, A., Telerman, A., Ofir, R., Kashman, Y., 2017. “Glutamate toxicity to differentiated neuroblastoma N2a cells is prevented by the sesquiterpene lactone achillolide A and the flavonoid 3, 5, 4′-trihydroxy-6, 7, 3′-trimethoxyflavone from Achillea fragrantissima”, Journal of Molecular Neuroscience, 62(1), 99-105.
  • Referans6: Elufioye, T. O., Berida, T. I., Habtemariam, S., 2017. “Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms”, Evidence-Based Complementary and Alternative Medicine, 25(1), 1-28.
  • Referans7: Erel, O., 2004. “A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation”, Clinical biochemistry, 37(4), 277-285.
  • Referans 8: Erel, O., 2005. “A new automated colorimetric method for measuring total oxidant status”, Clinical biochemistry, 38(12), 1103-1111.
  • Referans9:Frandsen, J. R., Narayanasamy, P., 2018. “Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway”, Redox biology, 14, 465-473.
  • Referans10: Gottlieb, M., Leal-Campanario, R., Campos-Esparza, M. R., Sánchez-Gómez, M. V., Alberdi, E., Arranz, A., Matute, C., 2006. “Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia”, Neurobiology of disease, 23(2), 374-386.
  • Referans11: Khan, M. M., Kempuraj, D., Thangavel, R., Zaheer, A., 2013. “Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol”, Neurochemistry international, 62(4), 379-388.
  • Referans12: Ma, Y. M., Ibeanu, G., Wang, L. Y., Zhang, J. Z., Chang, Y., Dong, J. D., Jing, L., 2017. “Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells”, BMC neuroscience, 18(1), 1-14.
  • Referans13: Malekahmadi, M., Moghaddam, O. M., Islam, S. M. S., Tanha, K., Nematy, M., Pahlavani, N., .Norouzy, A., 2020. “Evaluation of the effects of pycnogenol (French maritime pine bark extract) supplementation on inflammatory biomarkers and nutritional and clinical status in traumatic brain injury patients in an intensive care unit: A randomized clinical trial protocol”, Trials, 21(1), 1-9.
  • Referans14: Maritim, A., Dene, B. A., Sanders, R. A., Watkins III, J. B., 2003. “Effects of pycnogenol treatment on oxidative stress in streptozotocin‐induced diabetic rats”, Journal of Biochemical and Molecular Toxicology, 17(3), 193-199.
  • Referans14: Muddapu, V. R., Dharshini, S. A. P., Chakravarthy, V. S., & Gromiha, M. M., 2020. “Neurodegenerative Diseases–Is Metabolic Deficiency the Root Cause?”, Frontiers in Neuroscience, 14, 1-19.
  • Referans15: Ozoner, B., Yuceli, S., Aydin, S., Yazici, G. N., Sunar, M., Arslan, Y. K., Suleyman, H., 2019. “Effects of pycnogenol on ischemia/reperfusion-induced inflammatory and oxidative brain injury in rats”, Neuroscience letters, 704, 169-175.
  • Referans16: Prasansuklab, A., Brimson, J. M., Tencomnao, T., 2020. “Potential Thai medicinal plants for neurodegenerative diseases: A review focusing on the anti-glutamate toxicity effect”, Journal of Traditional and Complementary Medicine, 10(3), 301-308.
  • Referans17: Prentice, H., Modi, J. P., Wu, J. Y., 2015. “Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases”, Oxidative medicine and cellular longevity, 20, 1-8.
  • Referans18: Rajabian, A., Sadeghnia, H. R., Moradzadeh, M., Hosseini, A. 2018. Rheum turkestanicum reduces glutamate toxicity in PC12 and N2a cell lines. Folia neuropathologica, 56(4), 354-361.
  • Referans19: Rohdewald, P., 2002. “A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology”, International journal of clinical pharmacology and therapeutics, 40(4), 158-168.
  • Referans20: Shimmyo, Y., Kihara, T., Akaike, A., Niidome, T., & Sugimoto, H., 2008. “Three distinct neuroprotective functions of myricetin against glutamate‐induced neuronal cell death: involvement of direct inhibition of caspase‐3”, Journal of neuroscience research, 86(8), 1836-1845.
  • Referans21: Simpson, T., Kure, C., Stough, C., 2019. “Assessing the efficacy and mechanisms of Pycnogenol® on cognitive aging from in vitro, animal and human studies”, Frontiers in pharmacology, 10, 694-702.
  • Referans22: Solanki, I., Parihar, P., Mansuri, M. L., Parihar, M. S., 2015. “Flavonoid-based therapies in the early management of neurodegenerative diseases”, Advances in nutrition, 6(1), 64-72.
  • Referans23: Taghizadehghalehjoughi, A., Cicek, B., 2018. “Momordica and Pycnogenol Can Tolerate Imazamox Induced Toxicity in L929 Cells Line: In Vitro Study”, In Multidisciplinary Digital Publishing Institute Proceedings, 2 (25), 1584.
  • Referans24: Taghizadehghalehjoughi, A., Naldan, M. E., 2019. “Is ketamine suitable for use in glutamate toxicity conditions?: An in vitro study”, Journal of Investigative Surgery, 1-8.
  • Referans25: Yu, D., Duan, Y., Bao, Y., Wei, C., An, L., 2005. “Isoflavonoids from Astragalus mongholicus protect PC12 cells from toxicity induced by L-glutamate”, Journal of ethnopharmacology, 98(1-2), 89-94.
  • Referans26: Yudkoff, M., 2017. “Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS”, Neurochemical research, 42(1), 10-18.

Glutamat Kaynaklı Nörotoksisite Üzerinde Pycnogenol'un Koruyucu Etkisinin Araştırılması: İn Vitro Analizi

Yıl 2021, , 864 - 873, 31.08.2021
https://doi.org/10.18185/erzifbed.877837

Öz

Eksitatör bir nörotransmitter olan glutamatın aşırı salınımı epilepsi ve Alzheimer gibi birçok nörodejeneratif hastalığın patogenezinde yer almaktadır. Bu nedenle nöronal hücreleri glutamata bağlı toksisiteye karşı koruyan bileşiklerin araştırılması oldukça önemlidir. Pinus maritima'dan elde edilen piknogenol® içerdiği fenolik bileşikler ve flavonoidlerden dolayı güçlü antioksidan özelliğe sahiptir. Bu çalışmada Pinus maritime'den elde edilen bioflavonoid yapısında olan pignogenolün nöroprotektif etkilerini glutamat toksisitesi oluşturulan kortikal nöron kültüründe araştırmayı amaçladık. Kortikal nöron hücreleri 30 dakika süre ile 10-5 mM glutamata maruz bırakılarak glutamat eksitotoksisitesi indüklendi. Sonrasında faklı konsantrasyonlarda (10-1 - 10-5) PYC ile 24 saat boyunca inkübe edilmiştir. Hücre canlılık testi MTT yöntemi ile belirlendi. Oksidatif hasarı göstermek için total antioksidan seviyesi (TAS)- - total oksidan seviyesi (TOS) analizleri kullanılmıştır. MTT sonuçlarına göre 10-1 ve 10-2 piknogenol konsantrasyonlarının glutamat eksitotoksisitesine bağlı hücre ölümünü azalttığı görüldü. Aynı zamanda TAS-TOS sonuçları MTT sonuçları ile korelasyon saptandı. Bu çalışma sonuçlarına göre piknogenolün glutamat eksitotoksisitesine karşı teropatik ajan olarak kullanılabileceği düşünülmüştür.

Kaynakça

  • Referans1: Chávez-Castillo, M., Rojas, M., Bautista, J., 2017. “Excitotoxicity: an organized crime at the cellular level”, Archıvos De Medıcına, 8(3), 193.
  • Referans2: Cui, Y., Amarsanaa, K., Lee, J. H., Rhim, J. K., Kwon, J. M., Kim, S. H., Eun, S. Y., 2019. “Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway”, The Korean Journal of Physiology & Pharmacology, 23(2), 121-130.
  • Referans3: Dong, X. X., Wang, Y., Qin, Z. H., 2009. “Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases”, Acta Pharmacologica Sinica, 30(4), 379-387.
  • Referans4: Dvořáková, M., Sivoňová, M., Trebatická, J., Škodáček, I., Waczuliková, I., Muchová, J., Ďuračková, Z., 2006. “The effect of polyphenolic extract from pine bark, Pycnogenol® on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD)”, Redox Report, 11(4), 163-172.
  • Referans5: Elmann, A., Telerman, A., Ofir, R., Kashman, Y., 2017. “Glutamate toxicity to differentiated neuroblastoma N2a cells is prevented by the sesquiterpene lactone achillolide A and the flavonoid 3, 5, 4′-trihydroxy-6, 7, 3′-trimethoxyflavone from Achillea fragrantissima”, Journal of Molecular Neuroscience, 62(1), 99-105.
  • Referans6: Elufioye, T. O., Berida, T. I., Habtemariam, S., 2017. “Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms”, Evidence-Based Complementary and Alternative Medicine, 25(1), 1-28.
  • Referans7: Erel, O., 2004. “A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation”, Clinical biochemistry, 37(4), 277-285.
  • Referans 8: Erel, O., 2005. “A new automated colorimetric method for measuring total oxidant status”, Clinical biochemistry, 38(12), 1103-1111.
  • Referans9:Frandsen, J. R., Narayanasamy, P., 2018. “Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway”, Redox biology, 14, 465-473.
  • Referans10: Gottlieb, M., Leal-Campanario, R., Campos-Esparza, M. R., Sánchez-Gómez, M. V., Alberdi, E., Arranz, A., Matute, C., 2006. “Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia”, Neurobiology of disease, 23(2), 374-386.
  • Referans11: Khan, M. M., Kempuraj, D., Thangavel, R., Zaheer, A., 2013. “Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol”, Neurochemistry international, 62(4), 379-388.
  • Referans12: Ma, Y. M., Ibeanu, G., Wang, L. Y., Zhang, J. Z., Chang, Y., Dong, J. D., Jing, L., 2017. “Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells”, BMC neuroscience, 18(1), 1-14.
  • Referans13: Malekahmadi, M., Moghaddam, O. M., Islam, S. M. S., Tanha, K., Nematy, M., Pahlavani, N., .Norouzy, A., 2020. “Evaluation of the effects of pycnogenol (French maritime pine bark extract) supplementation on inflammatory biomarkers and nutritional and clinical status in traumatic brain injury patients in an intensive care unit: A randomized clinical trial protocol”, Trials, 21(1), 1-9.
  • Referans14: Maritim, A., Dene, B. A., Sanders, R. A., Watkins III, J. B., 2003. “Effects of pycnogenol treatment on oxidative stress in streptozotocin‐induced diabetic rats”, Journal of Biochemical and Molecular Toxicology, 17(3), 193-199.
  • Referans14: Muddapu, V. R., Dharshini, S. A. P., Chakravarthy, V. S., & Gromiha, M. M., 2020. “Neurodegenerative Diseases–Is Metabolic Deficiency the Root Cause?”, Frontiers in Neuroscience, 14, 1-19.
  • Referans15: Ozoner, B., Yuceli, S., Aydin, S., Yazici, G. N., Sunar, M., Arslan, Y. K., Suleyman, H., 2019. “Effects of pycnogenol on ischemia/reperfusion-induced inflammatory and oxidative brain injury in rats”, Neuroscience letters, 704, 169-175.
  • Referans16: Prasansuklab, A., Brimson, J. M., Tencomnao, T., 2020. “Potential Thai medicinal plants for neurodegenerative diseases: A review focusing on the anti-glutamate toxicity effect”, Journal of Traditional and Complementary Medicine, 10(3), 301-308.
  • Referans17: Prentice, H., Modi, J. P., Wu, J. Y., 2015. “Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases”, Oxidative medicine and cellular longevity, 20, 1-8.
  • Referans18: Rajabian, A., Sadeghnia, H. R., Moradzadeh, M., Hosseini, A. 2018. Rheum turkestanicum reduces glutamate toxicity in PC12 and N2a cell lines. Folia neuropathologica, 56(4), 354-361.
  • Referans19: Rohdewald, P., 2002. “A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology”, International journal of clinical pharmacology and therapeutics, 40(4), 158-168.
  • Referans20: Shimmyo, Y., Kihara, T., Akaike, A., Niidome, T., & Sugimoto, H., 2008. “Three distinct neuroprotective functions of myricetin against glutamate‐induced neuronal cell death: involvement of direct inhibition of caspase‐3”, Journal of neuroscience research, 86(8), 1836-1845.
  • Referans21: Simpson, T., Kure, C., Stough, C., 2019. “Assessing the efficacy and mechanisms of Pycnogenol® on cognitive aging from in vitro, animal and human studies”, Frontiers in pharmacology, 10, 694-702.
  • Referans22: Solanki, I., Parihar, P., Mansuri, M. L., Parihar, M. S., 2015. “Flavonoid-based therapies in the early management of neurodegenerative diseases”, Advances in nutrition, 6(1), 64-72.
  • Referans23: Taghizadehghalehjoughi, A., Cicek, B., 2018. “Momordica and Pycnogenol Can Tolerate Imazamox Induced Toxicity in L929 Cells Line: In Vitro Study”, In Multidisciplinary Digital Publishing Institute Proceedings, 2 (25), 1584.
  • Referans24: Taghizadehghalehjoughi, A., Naldan, M. E., 2019. “Is ketamine suitable for use in glutamate toxicity conditions?: An in vitro study”, Journal of Investigative Surgery, 1-8.
  • Referans25: Yu, D., Duan, Y., Bao, Y., Wei, C., An, L., 2005. “Isoflavonoids from Astragalus mongholicus protect PC12 cells from toxicity induced by L-glutamate”, Journal of ethnopharmacology, 98(1-2), 89-94.
  • Referans26: Yudkoff, M., 2017. “Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS”, Neurochemical research, 42(1), 10-18.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Betül Çiçek 0000-0003-1395-1326

Ali Taghizadehghalehjoughi 0000-0002-3506-0324

Ahmet Hacımüftüoğlu

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Çiçek, B., Taghizadehghalehjoughi, A., & Hacımüftüoğlu, A. (2021). Glutamat Kaynaklı Nörotoksisite Üzerinde Pycnogenol’un Koruyucu Etkisinin Araştırılması: İn Vitro Analizi. Erzincan University Journal of Science and Technology, 14(2), 864-873. https://doi.org/10.18185/erzifbed.877837