Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 340 - 359, 27.03.2022
https://doi.org/10.18185/erzifbed.971321

Öz

Kaynakça

  • Akyuz, E., Coskun, C., Oktay, Z., & Dincer, I. (2012). A novel approach for estimation of photovoltaic exergy efficiency. Energy, 44(1), 1059–1066. https://doi.org/10.1016/j.energy.2012.04.036
  • Amelia, A. R., Irwan, Y. M., Irwanto, M., Leow, W. Z., Gomesh, N., Safwati, I., & Anuar, M. A. M. (2016). Cooling on photovoltaic panel using forced air convection induced by DC fan. International Journal of Electrical and Computer Engineering, 6(2), 526–534. https://doi.org/10.11591/ijece.v6i1.9118
  • Arifin, Z., Tjahjana, D. D. D. P., Hadi, S., Rachmanto, R. A., Setyohandoko, G., & Sutanto, B. (2020). Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. International Journal of Photoenergy, 2020. https://doi.org/10.1155/2020/1574274
  • Bahaidarah, H. M. S., Baloch, A. A. B., & Gandhidasan, P. (2016). Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 57, 1520–1544. https://doi.org/10.1016/j.rser.2015.12.064
  • Bashir, M., Ali, H., Amber, K., Bashir, M., Ali, H., Imran, S., & Kamran, M. (2018). Performance investigation of photovoltaic modules by back surface water cooling. Thermal Science, 22(6 Part A), 2401–2411. https://doi.org/10.2298/TSCI160215290B
  • Bayrak, F., Oztop, H. F., & Hepbasli, A. (2013). Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energy and Buildings, 57. https://doi.org/10.1016/j.enbuild.2012.10.055
  • Bayrak, Fatih, Abu-Hamdeh, N., Alnefaie, K. A., & Öztop, H. F. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, 755–770. https://doi.org/10.1016/j.rser.2017.03.012
  • Bayrak, Fatih, Ertürk, G., & Oztop, H. F. (2017). Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of Cleaner Production, 164, 58–69. https://doi.org/10.1016/j.jclepro.2017.06.108
  • Bayrak, Fatih, & Oztop, H. F. (2020). Effects of static and dynamic shading on thermodynamic and electrical performance for photovoltaic panels. Applied Thermal Engineering, 169(January), 114900. https://doi.org/10.1016/j.applthermaleng.2020.114900
  • Bayrak, Fatih, Oztop, H. F., & Selimefendigil, F. (2019). Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy, 188, 484–494. https://doi.org/10.1016/j.solener.2019.06.036
  • Bayrak, Fatih, Oztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212(February), 112789. https://doi.org/10.1016/j.enconman.2020.112789
  • Bevilacqua, P., Bruno, R., & Arcuri, N. (2020). Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions. Energy, 195, 116950. https://doi.org/10.1016/j.energy.2020.116950
  • Bevilacqua, P., Perrella, S., Cirone, D., Bruno, R., & Arcuri, N. (2021). Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling. Energies, 14(4), 895. https://doi.org/10.3390/en14040895
  • Cuce, E., Cuce, P. M., & Bali, T. (2013). An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy, 111, 374–382. https://doi.org/10.1016/j.apenergy.2013.05.025
  • Dincer, I. (2002). The role of exergy in energy policy making. Energy Policy, 30(2), 137–149. https://doi.org/10.1016/S0301-4215(01)00079-9
  • Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. In Entropy (Vol. 3, Issue 3). https://doi.org/10.3390/e3030116
  • Elbreki, A. M., Alghoul, M. A., Sopian, K., & Hussein, T. (2017). Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution. Renewable and Sustainable Energy Reviews, 69(September), 961–1017. https://doi.org/10.1016/j.rser.2016.09.054
  • Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., Mohammad, M., & Sopian, K. (2019). Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renewable and Sustainable Energy Reviews, 100(July 2018), 44–51. https://doi.org/10.1016/j.rser.2018.10.019
  • Gholampour, M., Ameri, M., & Sheykh Samani, M. (2014). Experimental study of performance of Photovoltaic-Thermal Unglazed Transpired Solar Collectors (PV/UTCs): Energy, exergy, and electrical-to-thermal rational approaches. Solar Energy, 110, 636–647. https://doi.org/10.1016/j.solener.2014.09.011
  • Hammond, G. P., & Stapleton, A. J. (2001). Exergy analysis of the United Kingdom energy system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(2), 141–162. https://doi.org/10.1243/0957650011538424
  • Hasanuzzaman, M., Malek, A. B. M. A., Islam, M. M., Pandey, A. K., & Rahim, N. A. (2016). Global advancement of cooling technologies for PV systems: A review. Solar Energy, 137, 25–45. https://doi.org/10.1016/j.solener.2016.07.010
  • Hepbasli, A., & Akdemir, O. (2004). Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Conversion and Management, 45(5), 737–753. https://doi.org/10.1016/S0196-8904(03)00185-7
  • Holman, J.P. (1994). Experimental Methods for Engineers (sixth ed.). McGraw-Hill.
  • https://www.worlddata.info/. (2021). https://www.worlddata.info/, 03.04.2021.
  • Idoko, L., Anaya-Lara, O., & McDonald, A. (2018). Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports, 4, 357–369. https://doi.org/10.1016/j.egyr.2018.05.004
  • inko. (2020). https://www.inkoelektronik.com.tr/urun/120x120x25mm-12vdc, 03.11.2021.
  • Irwan, Y. M., Leow, W. Z., Irwanto, M., Fareq, M., Hassan, S. I. S., Safwati, I., & Amelia, A. R. (2015). Comparison of solar panel cooling system by using dc brushless fan and dc water. Journal of Physics: Conference Series, 622(1). https://doi.org/10.1088/1742-6596/622/1/012001
  • Lorentz. (2020). LC80-12M. https://www.deparsolar.com/images/dosya/LC80_12M.pdf, 03.11.2021.
  • Makki, A., Omer, S., & Sabir, H. (2015). Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews, 41, 658–684. https://doi.org/10.1016/j.rser.2014.08.069
  • Ndukwu, M. C., Bennamoun, L., Abam, F. I., Eke, A. B., & Ukoha, D. (2017). Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renewable Energy, 113, 1182–1192. https://doi.org/10.1016/j.renene.2017.06.097
  • Ndukwu, M. C., Simo-Tagne, M., Abam, F. I., Onwuka, O. S., Prince, S., & Bennamoun, L. (2020). Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon, 6(2), e03401. https://doi.org/10.1016/j.heliyon.2020.e03401
  • Oztop, H. F., Bayrak, F., & Hepbasli, A. (2013). Energetic and exergetic aspects of solar air heating (solar collector) systems. Renewable and Sustainable Energy Reviews, 21. https://doi.org/10.1016/j.rser.2012.12.019
  • Petela, R. (2008). An approach to the exergy analysis of photosynthesis. Solar Energy, 82(4), 311–328. https://doi.org/10.1016/j.solener.2007.09.002
  • Selimefendigil, F., Bayrak, F., & Oztop, H. F. (2018). Experimental analysis and dynamic modeling of a photovoltaic module with porous fins. Renewable Energy, 125, 193–205. https://doi.org/10.1016/J.RENENE.2018.02.002
  • Shmroukh, A. N. (2019). Thermal regulation of photovoltaic panel installed in Upper Egyptian conditions in Qena. Thermal Science and Engineering Progress, 14(October), 100438. https://doi.org/10.1016/j.tsep.2019.100438
  • Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275–286. https://doi.org/10.1016/j.solmat.2016.10.047
  • Siah Chehreh Ghadikolaei, S. (2021). Solar photovoltaic cells performance improvement by cooling technology: An overall review. International Journal of Hydrogen Energy, 46(18), 10939–10972. https://doi.org/10.1016/j.ijhydene.2020.12.164
  • Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79(May), 192–203. https://doi.org/10.1016/j.rser.2017.05.053
  • Sudhakar, P., Kumaresan, G., & Velraj, R. (2017). Experimental analysis of solar photovoltaic unit integrated with free cool thermal energy storage system. Solar Energy, 158(October), 837–844. https://doi.org/10.1016/j.solener.2017.10.043
  • Syafiqah, Z., Amin, N. A. M., Irwan, Y. M., Irwanto, M., Leow, W. Z., & Amelia, A. R. (2017). Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. AIP Conference Proceedings, 1885. https://doi.org/10.1063/1.5002435
  • Syafiqah, Z., Irwan, Y. M., Amin, N. A. M., Irwanto, M., Leow, W. Z., & Amelia, A. R. (2017). Thermal and Electrical Study for PV Panel With Cooling. Indonesian Journal of Electrical Engineering and Computer Science, 7(2), 492. https://doi.org/10.11591/ijeecs.v7.i2.pp492-499
  • Tiwari, G. N., Mishra, R. K., & Solanki, S. C. (2011). Photovoltaic modules and their applications: A review on thermal modelling. Applied Energy, 88(7), 2287–2304. https://doi.org/10.1016/j.apenergy.2011.01.005
  • Wang, Y., Gao, Y., Huang, Q., Hu, G., & Zhou, L. (2019). Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement. Energy Conversion and Management, 199(August), 111990. https://doi.org/10.1016/j.enconman.2019.111990

Energy, Exergy and Sustainability Indicators of Photovoltaic Panel Cooling under Forced Convection

Yıl 2022, , 340 - 359, 27.03.2022
https://doi.org/10.18185/erzifbed.971321

Öz

Photovoltaic (PV) panels generate some of their energy as waste heat while converting solar radiation into electricity. This heat in photovoltaic panels adversely affects the output parameters of the panels. For this reason, there are many studies on cooling of PV panels in the literature. In this experimental study, waste heat was removed by placing DC fans with different numbers and different consumption power on 80 W monocrystalline panels. According to the results obtained from the experiments, while the net power of the reference panel was 62.42W, the net power of the E4 system (with 4 fans and the consumption power of the fans was 10W) was measured as 64.1W. The highest exergy efficiency and sustainability index values among all systems were also obtained from the E4 system.

Kaynakça

  • Akyuz, E., Coskun, C., Oktay, Z., & Dincer, I. (2012). A novel approach for estimation of photovoltaic exergy efficiency. Energy, 44(1), 1059–1066. https://doi.org/10.1016/j.energy.2012.04.036
  • Amelia, A. R., Irwan, Y. M., Irwanto, M., Leow, W. Z., Gomesh, N., Safwati, I., & Anuar, M. A. M. (2016). Cooling on photovoltaic panel using forced air convection induced by DC fan. International Journal of Electrical and Computer Engineering, 6(2), 526–534. https://doi.org/10.11591/ijece.v6i1.9118
  • Arifin, Z., Tjahjana, D. D. D. P., Hadi, S., Rachmanto, R. A., Setyohandoko, G., & Sutanto, B. (2020). Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. International Journal of Photoenergy, 2020. https://doi.org/10.1155/2020/1574274
  • Bahaidarah, H. M. S., Baloch, A. A. B., & Gandhidasan, P. (2016). Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 57, 1520–1544. https://doi.org/10.1016/j.rser.2015.12.064
  • Bashir, M., Ali, H., Amber, K., Bashir, M., Ali, H., Imran, S., & Kamran, M. (2018). Performance investigation of photovoltaic modules by back surface water cooling. Thermal Science, 22(6 Part A), 2401–2411. https://doi.org/10.2298/TSCI160215290B
  • Bayrak, F., Oztop, H. F., & Hepbasli, A. (2013). Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energy and Buildings, 57. https://doi.org/10.1016/j.enbuild.2012.10.055
  • Bayrak, Fatih, Abu-Hamdeh, N., Alnefaie, K. A., & Öztop, H. F. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, 755–770. https://doi.org/10.1016/j.rser.2017.03.012
  • Bayrak, Fatih, Ertürk, G., & Oztop, H. F. (2017). Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of Cleaner Production, 164, 58–69. https://doi.org/10.1016/j.jclepro.2017.06.108
  • Bayrak, Fatih, & Oztop, H. F. (2020). Effects of static and dynamic shading on thermodynamic and electrical performance for photovoltaic panels. Applied Thermal Engineering, 169(January), 114900. https://doi.org/10.1016/j.applthermaleng.2020.114900
  • Bayrak, Fatih, Oztop, H. F., & Selimefendigil, F. (2019). Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy, 188, 484–494. https://doi.org/10.1016/j.solener.2019.06.036
  • Bayrak, Fatih, Oztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212(February), 112789. https://doi.org/10.1016/j.enconman.2020.112789
  • Bevilacqua, P., Bruno, R., & Arcuri, N. (2020). Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions. Energy, 195, 116950. https://doi.org/10.1016/j.energy.2020.116950
  • Bevilacqua, P., Perrella, S., Cirone, D., Bruno, R., & Arcuri, N. (2021). Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling. Energies, 14(4), 895. https://doi.org/10.3390/en14040895
  • Cuce, E., Cuce, P. M., & Bali, T. (2013). An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy, 111, 374–382. https://doi.org/10.1016/j.apenergy.2013.05.025
  • Dincer, I. (2002). The role of exergy in energy policy making. Energy Policy, 30(2), 137–149. https://doi.org/10.1016/S0301-4215(01)00079-9
  • Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. In Entropy (Vol. 3, Issue 3). https://doi.org/10.3390/e3030116
  • Elbreki, A. M., Alghoul, M. A., Sopian, K., & Hussein, T. (2017). Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution. Renewable and Sustainable Energy Reviews, 69(September), 961–1017. https://doi.org/10.1016/j.rser.2016.09.054
  • Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., Mohammad, M., & Sopian, K. (2019). Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renewable and Sustainable Energy Reviews, 100(July 2018), 44–51. https://doi.org/10.1016/j.rser.2018.10.019
  • Gholampour, M., Ameri, M., & Sheykh Samani, M. (2014). Experimental study of performance of Photovoltaic-Thermal Unglazed Transpired Solar Collectors (PV/UTCs): Energy, exergy, and electrical-to-thermal rational approaches. Solar Energy, 110, 636–647. https://doi.org/10.1016/j.solener.2014.09.011
  • Hammond, G. P., & Stapleton, A. J. (2001). Exergy analysis of the United Kingdom energy system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(2), 141–162. https://doi.org/10.1243/0957650011538424
  • Hasanuzzaman, M., Malek, A. B. M. A., Islam, M. M., Pandey, A. K., & Rahim, N. A. (2016). Global advancement of cooling technologies for PV systems: A review. Solar Energy, 137, 25–45. https://doi.org/10.1016/j.solener.2016.07.010
  • Hepbasli, A., & Akdemir, O. (2004). Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Conversion and Management, 45(5), 737–753. https://doi.org/10.1016/S0196-8904(03)00185-7
  • Holman, J.P. (1994). Experimental Methods for Engineers (sixth ed.). McGraw-Hill.
  • https://www.worlddata.info/. (2021). https://www.worlddata.info/, 03.04.2021.
  • Idoko, L., Anaya-Lara, O., & McDonald, A. (2018). Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports, 4, 357–369. https://doi.org/10.1016/j.egyr.2018.05.004
  • inko. (2020). https://www.inkoelektronik.com.tr/urun/120x120x25mm-12vdc, 03.11.2021.
  • Irwan, Y. M., Leow, W. Z., Irwanto, M., Fareq, M., Hassan, S. I. S., Safwati, I., & Amelia, A. R. (2015). Comparison of solar panel cooling system by using dc brushless fan and dc water. Journal of Physics: Conference Series, 622(1). https://doi.org/10.1088/1742-6596/622/1/012001
  • Lorentz. (2020). LC80-12M. https://www.deparsolar.com/images/dosya/LC80_12M.pdf, 03.11.2021.
  • Makki, A., Omer, S., & Sabir, H. (2015). Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews, 41, 658–684. https://doi.org/10.1016/j.rser.2014.08.069
  • Ndukwu, M. C., Bennamoun, L., Abam, F. I., Eke, A. B., & Ukoha, D. (2017). Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renewable Energy, 113, 1182–1192. https://doi.org/10.1016/j.renene.2017.06.097
  • Ndukwu, M. C., Simo-Tagne, M., Abam, F. I., Onwuka, O. S., Prince, S., & Bennamoun, L. (2020). Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon, 6(2), e03401. https://doi.org/10.1016/j.heliyon.2020.e03401
  • Oztop, H. F., Bayrak, F., & Hepbasli, A. (2013). Energetic and exergetic aspects of solar air heating (solar collector) systems. Renewable and Sustainable Energy Reviews, 21. https://doi.org/10.1016/j.rser.2012.12.019
  • Petela, R. (2008). An approach to the exergy analysis of photosynthesis. Solar Energy, 82(4), 311–328. https://doi.org/10.1016/j.solener.2007.09.002
  • Selimefendigil, F., Bayrak, F., & Oztop, H. F. (2018). Experimental analysis and dynamic modeling of a photovoltaic module with porous fins. Renewable Energy, 125, 193–205. https://doi.org/10.1016/J.RENENE.2018.02.002
  • Shmroukh, A. N. (2019). Thermal regulation of photovoltaic panel installed in Upper Egyptian conditions in Qena. Thermal Science and Engineering Progress, 14(October), 100438. https://doi.org/10.1016/j.tsep.2019.100438
  • Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275–286. https://doi.org/10.1016/j.solmat.2016.10.047
  • Siah Chehreh Ghadikolaei, S. (2021). Solar photovoltaic cells performance improvement by cooling technology: An overall review. International Journal of Hydrogen Energy, 46(18), 10939–10972. https://doi.org/10.1016/j.ijhydene.2020.12.164
  • Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79(May), 192–203. https://doi.org/10.1016/j.rser.2017.05.053
  • Sudhakar, P., Kumaresan, G., & Velraj, R. (2017). Experimental analysis of solar photovoltaic unit integrated with free cool thermal energy storage system. Solar Energy, 158(October), 837–844. https://doi.org/10.1016/j.solener.2017.10.043
  • Syafiqah, Z., Amin, N. A. M., Irwan, Y. M., Irwanto, M., Leow, W. Z., & Amelia, A. R. (2017). Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. AIP Conference Proceedings, 1885. https://doi.org/10.1063/1.5002435
  • Syafiqah, Z., Irwan, Y. M., Amin, N. A. M., Irwanto, M., Leow, W. Z., & Amelia, A. R. (2017). Thermal and Electrical Study for PV Panel With Cooling. Indonesian Journal of Electrical Engineering and Computer Science, 7(2), 492. https://doi.org/10.11591/ijeecs.v7.i2.pp492-499
  • Tiwari, G. N., Mishra, R. K., & Solanki, S. C. (2011). Photovoltaic modules and their applications: A review on thermal modelling. Applied Energy, 88(7), 2287–2304. https://doi.org/10.1016/j.apenergy.2011.01.005
  • Wang, Y., Gao, Y., Huang, Q., Hu, G., & Zhou, L. (2019). Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement. Energy Conversion and Management, 199(August), 111990. https://doi.org/10.1016/j.enconman.2019.111990
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Bayrak 0000-0003-3715-6458

Yayımlanma Tarihi 27 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Bayrak, F. (2022). Energy, Exergy and Sustainability Indicators of Photovoltaic Panel Cooling under Forced Convection. Erzincan University Journal of Science and Technology, 15(1), 340-359. https://doi.org/10.18185/erzifbed.971321