Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Investigation of Combustion and Emission Behavior of Shale Gas Mixtures in a Laboratory Scale Combustor

Yıl 2019, Cilt: 12 Sayı: 3, 1579 - 1589, 31.12.2019
https://doi.org/10.18185/erzifbed.615509

Öz

In this
study, effects of gas composition and swirl number on combustion and emission
behavior of shale gas mixtures were numerically investigated in a laboratory
scale combustor. For this purpose, a two-dimensional model of an experimentally
tested premixed combustor was formed. In this model, methane/air combustion was
simulated, and achieved results were compared with experimental data to validate
applicability of the model. Numerical studies were performed using
computational fluid dynamics software, ANSYS/Fluent. Tested shale gas mixtures
are; 86% CH4 - 14% C2H6, 81% CH4 -
10% C2H6 - 9% N2 and 58% CH4 - 20%
C2H6 - 12% C3H8 - 10% CO2.
Combustion and emission behavior of the respective mixtures were determined by
examining temperature and species (CO2 and NOx)
distributions throughout the combustion chamber. Results of this study showed
that %86 CH4- %14 C2H6 mixture is favorable in
terms of combustion and emission performance; emissions of NOx are
highly dependent on gas composition and swirl number, and axial temperature
values and reaction rate are directly proportional to swirl number. 

Kaynakça

  • Abdel-Al, M. A., Yehia, M. A., Taha, M. R., Abou-Arab, T. W., 2013. “Effect of Fuel and Air Injection Pattern on Combustion Dynamics in Confined and Free Diffusion Flame”, International Journal of Modern Engineering Research (IJMER), 1(3), 928-938.
  • Dadsetan, M., Chitsaz, I., Amani, E., 2019. “A Study of Swirl Ratio Effects on the NOx Formation and Mixture Stratification in an RCCI Engine”. Energy, 182, 1100-1114.
  • Etiope, G., Drobniak, A., Schimmelmann, A., 2013. “Natural Seepage of Shale Gas and the Origin of “Eternal Flames” in the Northern Appalachian Basin, USA”, Marine and Petroleum Geology, 43, 178-186.
  • Fluent, A., 2009. “12.0 Theory Guide”. Ansys Inc, 5(5).
  • Gaikwad, P., Kulkarni, H., Sreedhara, S., 2017. “Simplified Numerical Modelling of Oxy-Fuel Combustion of Pulverized Coal in a Swirl Burner”, Applied Thermal Engineering, 124, 734-745.
  • İlbaş, M., 2017. “Türkiyen’nin “Kaya Gazı” Potansiyeli”, https://www.tespam.org/turkiyennin-kaya-gazi-potansiyeli/, Son erişim tarihi: 03.09.2019.
  • Ilbas, M., Yılmaz, İ., Kaplan, Y., 2005. “Investigations of Hydrogen and Hydrogen–Hydrocarbon Composite Fuel Combustion and NOx Emission Characteristics in a Model Combustor”, International Journal of Hydrogen Energy, 30(10), 1139-1147.
  • Mohammed, A. N., Juhany, K. A., Kumar, S., Kishore, V. R., Mohammad, A., 2017. “Effects of CO2/N2 Dilution on Laminar Burning Velocity of Stoichiometric DME-Air Mixture at Elevated Temperatures”, Journal of Hazardous Materials, 333, 215-221.
  • Samiran, N. A., Ng, J. H., Jaafar, M. N. M., Valera-Medina, A., Chong, C. T., 2017. “Swirl Stability and Emission Characteristics of CO-Enriched Syngas/Air Flame in a Premixed Swirl Burner”, Process Safety and Environmental Protection, 112, 315-326.
  • Şengüller, İ., 2012. “Şeyl Gazı (Shale Gas) ve Ekonomik Değeri”, MTA Ekonomi Bülteni, 13-8.
  • Skea, J., 2015. “A Guide to Shale Gas”, Energy Institute, London, 24 pp.
  • Speight, J. G., 2013. “Shale Gas Properties and Processing”, Shale Gas Production Processes, 101-119.
  • Vargas, A. C., Arrieta, A. A., Arrieta, C. E., 2016. “Combustion Characteristics of Several Typical Shale Gas Mixtures”, Journal of Natural Gas Science and Engineering, 33, 296-304.
  • Vengosh, A., Warner, N., Jackson, R., Darrah, T., 2013. “The Effects of Shale Gas Exploration and Hydraulic Fracturing on the Quality of Water Resources in the United States”, Procedia Earth and Planetary Science, 7, 863-866.
  • Wang, G., Yu, W., Li, X., Su, Y., Yang, R., Wu, W., 2019. “Experimental and Numerical Study on the Influence of Intake Swirl on Fuel Spray and In-Cylinder Combustion Characteristics on Large Bore Diesel Engine”, Fuel, 237, 209-221.
  • Xu, Y., Jia, R., Medina, H., Sun, H., 2019. “Effect of Tangential Swirl Air Inlet Angle on the Combustion Efficiency of a Hybrid Powder-Solid Ramjet”, Acta Astronautica, 159, 87-95.
  • Yilmaz, H., Yilmaz, I., 2019. “Combustion and Emission Characteristics of Premixed CNG/H2/CO/CO2 Blending Synthetic Gas Flames in a Combustor with Variable Geometric Swirl Number”, Energy, 172, 117-133.
  • Yoon, S., Lee, S., KWon, H., Lee, J., Park, S., 2018. “Effects of the Swirl Ratio and Injector Hole Number on the Combustion and Emission Characteristics of a Light Duty Diesel Engine”, Applied Thermal Engineering, 142, 68-78.
  • Zeng, L., Lyu, W., Li, J., Zhu, L., Weng, J., Yue, F., Zu, K., 2016. “Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China”, Journal of Natural Gas Science and Engineering, 30, 1-9.

Kaya Gazı Karışımlarının Yanma ve Emisyon Davranışlarının Laboratuvar Ölçekli Bir Yakıcıda Sayısal Olarak İncelenmesi

Yıl 2019, Cilt: 12 Sayı: 3, 1579 - 1589, 31.12.2019
https://doi.org/10.18185/erzifbed.615509

Öz

Bu çalışmada, kaya gazı
karışımlarının yanma ve emisyon davranışlarına yakıt bileşimi ve swirl
sayısının etkileri laboratuvar ölçekli bir yakıcıda sayısal olarak
incelenmiştir. Bu maksatla, deneysel olarak test edilmiş ön karışımlı bir
yakıcının iki boyutlu bir modeli oluşturulmuştur. Bu modelde metan/hava yanması
simule edilmiş ve elde edilen sonuçlar, oluşturulan modelin doğrulanması için deneysel
veriler ile kıyaslanmıştır. Sayısal çalışmalar hesaplamalı akışkanlar dinamiği
yazılımı, ANSYS/Fluent kullanılarak gerçekleştirilmiştir. Test edilen kaya gazı
karışımları; %86 CH4- %14 C2H6, %81 CH4- %10 C2H6-
%9 N2 ve %58 CH4- %20 C2H6- %12 C3H8-
%10 CO2’dir. İlgili karışımların yanma ve emisyon davranışları,
yanma odası boyunca sıcaklık ve tür (CO2 ve NOx)
dağılımları incelenerek belirlenmiştir. Elde edilen sonuçlar; %86 CH4-
%14 C2H6 karışımının yanma ve emisyon performansı
bakımından avantajlı olduğunu; NOx emisyonunun gaz kompozisyonuna ve
swirl sayısına son derece bağımlı olduğunu ve eksenel sıcaklık değerleri ve
reaksiyon hızının swirl sayısı ile doğru orantılı olduğunu göstermiştir. 

Kaynakça

  • Abdel-Al, M. A., Yehia, M. A., Taha, M. R., Abou-Arab, T. W., 2013. “Effect of Fuel and Air Injection Pattern on Combustion Dynamics in Confined and Free Diffusion Flame”, International Journal of Modern Engineering Research (IJMER), 1(3), 928-938.
  • Dadsetan, M., Chitsaz, I., Amani, E., 2019. “A Study of Swirl Ratio Effects on the NOx Formation and Mixture Stratification in an RCCI Engine”. Energy, 182, 1100-1114.
  • Etiope, G., Drobniak, A., Schimmelmann, A., 2013. “Natural Seepage of Shale Gas and the Origin of “Eternal Flames” in the Northern Appalachian Basin, USA”, Marine and Petroleum Geology, 43, 178-186.
  • Fluent, A., 2009. “12.0 Theory Guide”. Ansys Inc, 5(5).
  • Gaikwad, P., Kulkarni, H., Sreedhara, S., 2017. “Simplified Numerical Modelling of Oxy-Fuel Combustion of Pulverized Coal in a Swirl Burner”, Applied Thermal Engineering, 124, 734-745.
  • İlbaş, M., 2017. “Türkiyen’nin “Kaya Gazı” Potansiyeli”, https://www.tespam.org/turkiyennin-kaya-gazi-potansiyeli/, Son erişim tarihi: 03.09.2019.
  • Ilbas, M., Yılmaz, İ., Kaplan, Y., 2005. “Investigations of Hydrogen and Hydrogen–Hydrocarbon Composite Fuel Combustion and NOx Emission Characteristics in a Model Combustor”, International Journal of Hydrogen Energy, 30(10), 1139-1147.
  • Mohammed, A. N., Juhany, K. A., Kumar, S., Kishore, V. R., Mohammad, A., 2017. “Effects of CO2/N2 Dilution on Laminar Burning Velocity of Stoichiometric DME-Air Mixture at Elevated Temperatures”, Journal of Hazardous Materials, 333, 215-221.
  • Samiran, N. A., Ng, J. H., Jaafar, M. N. M., Valera-Medina, A., Chong, C. T., 2017. “Swirl Stability and Emission Characteristics of CO-Enriched Syngas/Air Flame in a Premixed Swirl Burner”, Process Safety and Environmental Protection, 112, 315-326.
  • Şengüller, İ., 2012. “Şeyl Gazı (Shale Gas) ve Ekonomik Değeri”, MTA Ekonomi Bülteni, 13-8.
  • Skea, J., 2015. “A Guide to Shale Gas”, Energy Institute, London, 24 pp.
  • Speight, J. G., 2013. “Shale Gas Properties and Processing”, Shale Gas Production Processes, 101-119.
  • Vargas, A. C., Arrieta, A. A., Arrieta, C. E., 2016. “Combustion Characteristics of Several Typical Shale Gas Mixtures”, Journal of Natural Gas Science and Engineering, 33, 296-304.
  • Vengosh, A., Warner, N., Jackson, R., Darrah, T., 2013. “The Effects of Shale Gas Exploration and Hydraulic Fracturing on the Quality of Water Resources in the United States”, Procedia Earth and Planetary Science, 7, 863-866.
  • Wang, G., Yu, W., Li, X., Su, Y., Yang, R., Wu, W., 2019. “Experimental and Numerical Study on the Influence of Intake Swirl on Fuel Spray and In-Cylinder Combustion Characteristics on Large Bore Diesel Engine”, Fuel, 237, 209-221.
  • Xu, Y., Jia, R., Medina, H., Sun, H., 2019. “Effect of Tangential Swirl Air Inlet Angle on the Combustion Efficiency of a Hybrid Powder-Solid Ramjet”, Acta Astronautica, 159, 87-95.
  • Yilmaz, H., Yilmaz, I., 2019. “Combustion and Emission Characteristics of Premixed CNG/H2/CO/CO2 Blending Synthetic Gas Flames in a Combustor with Variable Geometric Swirl Number”, Energy, 172, 117-133.
  • Yoon, S., Lee, S., KWon, H., Lee, J., Park, S., 2018. “Effects of the Swirl Ratio and Injector Hole Number on the Combustion and Emission Characteristics of a Light Duty Diesel Engine”, Applied Thermal Engineering, 142, 68-78.
  • Zeng, L., Lyu, W., Li, J., Zhu, L., Weng, J., Yue, F., Zu, K., 2016. “Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China”, Journal of Natural Gas Science and Engineering, 30, 1-9.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Harun Yılmaz 0000-0003-1657-4079

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 3

Kaynak Göster

APA Yılmaz, H. (2019). Kaya Gazı Karışımlarının Yanma ve Emisyon Davranışlarının Laboratuvar Ölçekli Bir Yakıcıda Sayısal Olarak İncelenmesi. Erzincan University Journal of Science and Technology, 12(3), 1579-1589. https://doi.org/10.18185/erzifbed.615509