Araştırma Makalesi
BibTex RIS Kaynak Göster

Serbest Z_2 Z_4 Z_8-Toplamsal Kodları Sayma

Yıl 2020, Cilt: 13 Sayı: ÖZEL SAYI I, 70 - 75, 28.02.2020
https://doi.org/10.18185/erzifbed.617007

Öz

Bu
çalışmada, 
Zα_2× Zβ_4× Zθ_8 uzayındaki serbest Z_2 Z_4 Z_8-toplamsal kodların tanımı yapılmış ve
bu kodların sayısı için bir formül elde edilmiştir.



Destekleyen Kurum

Osmaniye Korkut Ata Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

OKÜBAP-2019-PT3-006

Kaynakça

  • Aydoğdu, I. and Gürsoy, F. 2019. “Z_2 Z_4 Z_8-Cyclic Codes”, Journal of Applied Mathematics and Computing, 60(1-2), 327-341.
  • Aydoğdu, I. and Şiap, I. 2013. “Counting The Generator Matrices of Z_2 Z_8-Codes”, Mathematical Sciences And Applications E-Notes, 1 (2), 143-149.
  • Bhowmik, G. 1996. “Evaluation of the divisor function of matrices”, Acta Arithmetica, 74, 155-159.
  • Bilal, M., Borges, J., Dougherty, S.T. and Fernández-Córdoba, C. 2010. “Optimal codes over Z_2 ×Z_4”, VII Jornadas de Matemática Discreta y Algorítmica Castro Urdiales, Cantabria, 7–9 de julio de.
  • Bilal, M., Borges, J., Dougherty, S.T. and Fernández-Córdoba, C. 2011. “Maximum distance separable codes over Z_4 and Z_2 〖×Z〗_4”, Designs, Codes and Cryptography, 61, 31-40.
  • Çalışkan, B. and Balıkçı, K. 2019. “Counting Z_2 Z_4 Z_8-Additive Codes”, European Journal of Pure And Applied Mathematics, 12 (2), 668-679.
  • Delsarte, S. 1948. “Fonctions de Möbius Sur les Groups Abeliens Finis”, Annals of Math. 49(3), 600-609.
  • Delsarte, P. 1973. “An algebraic approach to the association schemes of coding theory”, Philips Res. Rep. Suppl., 10.
  • Djubjuk, P.E. 1948. “On the number of subgroups of a finite abelian group”, Izv. Akad. Nauk SSSR Ser. Mat. 12, 351-378.
  • Dougherty, S.T. and Saltürk, E. 2016. Counting Z_2 Z_4-Additive Codes. Noncommutative Rings and Their Applications, Contemporary Mathematics, 634, 137-147.
  • Dougherty, S.T. and Fernández-Córdoba, C. 2011. Codes over Z_2^k, Gray map and self-dual codes, Advances in Mathematics of Communications, 5, 571-588.
  • Fernández-Córdoba, C., Pujol, J. and Villanueva, M. 2010. Z_2 Z_4-linear codes : rank and kernel, Designs, Codes and Cryptography, 56, 43-59.
  • Park, Y.H. 2009. Modular independence and generator matrices for codes over Z_m, Designs, Codes and Cryptography, 50, 147-162.
  • Pujol, J. ve Rifa, J., Translation Invarriant Propelinear Codes, IEEE Trans. Inform. Theory, 43, 590-598, 1997.
  • Saltürk, E. 2013. Bulanık Alt Grupların ve Kodların Sayısı ile Bazı Uygulamaları, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 115.Yeh, Y. 1948. On Prime Power Abelian Groups. Bull. AMS, 54, 323-327.

Counting Free ℤ𝟐ℤ𝟒ℤ𝟖-Additive Codes

Yıl 2020, Cilt: 13 Sayı: ÖZEL SAYI I, 70 - 75, 28.02.2020
https://doi.org/10.18185/erzifbed.617007

Öz

In this study, free ℤ2ℤ4ℤ8-additive codes in the space of ℤ2𝛼×ℤ4𝛽×ℤ8𝜃 are defined and obtained a formula for the number of these codes.

Proje Numarası

OKÜBAP-2019-PT3-006

Kaynakça

  • Aydoğdu, I. and Gürsoy, F. 2019. “Z_2 Z_4 Z_8-Cyclic Codes”, Journal of Applied Mathematics and Computing, 60(1-2), 327-341.
  • Aydoğdu, I. and Şiap, I. 2013. “Counting The Generator Matrices of Z_2 Z_8-Codes”, Mathematical Sciences And Applications E-Notes, 1 (2), 143-149.
  • Bhowmik, G. 1996. “Evaluation of the divisor function of matrices”, Acta Arithmetica, 74, 155-159.
  • Bilal, M., Borges, J., Dougherty, S.T. and Fernández-Córdoba, C. 2010. “Optimal codes over Z_2 ×Z_4”, VII Jornadas de Matemática Discreta y Algorítmica Castro Urdiales, Cantabria, 7–9 de julio de.
  • Bilal, M., Borges, J., Dougherty, S.T. and Fernández-Córdoba, C. 2011. “Maximum distance separable codes over Z_4 and Z_2 〖×Z〗_4”, Designs, Codes and Cryptography, 61, 31-40.
  • Çalışkan, B. and Balıkçı, K. 2019. “Counting Z_2 Z_4 Z_8-Additive Codes”, European Journal of Pure And Applied Mathematics, 12 (2), 668-679.
  • Delsarte, S. 1948. “Fonctions de Möbius Sur les Groups Abeliens Finis”, Annals of Math. 49(3), 600-609.
  • Delsarte, P. 1973. “An algebraic approach to the association schemes of coding theory”, Philips Res. Rep. Suppl., 10.
  • Djubjuk, P.E. 1948. “On the number of subgroups of a finite abelian group”, Izv. Akad. Nauk SSSR Ser. Mat. 12, 351-378.
  • Dougherty, S.T. and Saltürk, E. 2016. Counting Z_2 Z_4-Additive Codes. Noncommutative Rings and Their Applications, Contemporary Mathematics, 634, 137-147.
  • Dougherty, S.T. and Fernández-Córdoba, C. 2011. Codes over Z_2^k, Gray map and self-dual codes, Advances in Mathematics of Communications, 5, 571-588.
  • Fernández-Córdoba, C., Pujol, J. and Villanueva, M. 2010. Z_2 Z_4-linear codes : rank and kernel, Designs, Codes and Cryptography, 56, 43-59.
  • Park, Y.H. 2009. Modular independence and generator matrices for codes over Z_m, Designs, Codes and Cryptography, 50, 147-162.
  • Pujol, J. ve Rifa, J., Translation Invarriant Propelinear Codes, IEEE Trans. Inform. Theory, 43, 590-598, 1997.
  • Saltürk, E. 2013. Bulanık Alt Grupların ve Kodların Sayısı ile Bazı Uygulamaları, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 115.Yeh, Y. 1948. On Prime Power Abelian Groups. Bull. AMS, 54, 323-327.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Basri Çalışkan 0000-0003-0512-4208

Proje Numarası OKÜBAP-2019-PT3-006
Yayımlanma Tarihi 28 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: ÖZEL SAYI I

Kaynak Göster

APA Çalışkan, B. (2020). Serbest Z_2 Z_4 Z_8-Toplamsal Kodları Sayma. Erzincan University Journal of Science and Technology, 13(ÖZEL SAYI I), 70-75. https://doi.org/10.18185/erzifbed.617007