Araştırma Makalesi
BibTex RIS Kaynak Göster

CuxZn(1-x)O Nanoparçacıklarıyla Dekore Edilmiş Kaolin Nanokompozitinin Sentezi, Karakterizasyonu ve Fotokatalitik Aktivitesi

Yıl 2020, Cilt: 13 Sayı: 2, 369 - 383, 31.08.2020
https://doi.org/10.18185/erzifbed.703223

Öz

Kaolin yüzeyine CuxZn(1-x)O nanoparçacıkları dekore edilerek kaolin-CuxZn(1-x)O nanokompoziti hazırlandı. Saf kaolinin, saf CuxZn(1-x)O nanoparçacıkları ve hazırlanan bu kaolin-CuxZn(1-x)O nanokompozitin fotokatalitik aktiviteleri UVA ışınları altında Rodamin B boyar maddesinin fotokatalitik bozunması incelenerek karşılaştırılmalı olarak değerlendirildi. Bütün numuneler SEM-EDX, XRD, FTIR, ve termik analiz (TG / DTG, DTA) teknikleri kullanılarak karakterize edildi. SEM-EDX ve XRD verileri saf CuxZn(1-x)O nanooksitlerin hekzagonal wurtzite yapısında kristallenen ZnO’in kristal örgüsünün içerisine bakır iyonlarının girmesiyle genişliği 100-250 nm arası çubuk ve içi boş tüp benzeri nanoyapılar şeklinde oluştuğunu göstermiştir. Kaolin-CuxZn(1-x)O nanokompozitinde bu metal oksit nanoyapıların aynı kristal ve morfolojide kaolinin tabakaları arasına sızmadan sadece kilin yüzeyinde dekore olduğu tespit edilmiştir. Kaolin ve CuxZn(1-x)O nanoparçacıkları arasındaki sinerjik etkiden ötürü en iyi fotokatalitik bozunma aktiviteye kaolin- CuxZn(1-x)O nanokompozitinin sahip olduğu ve bozunmanın yalancı birinci dereceden kinetik izlediği belirlendi. Ayrıca bu fotokatalitik bozunmaya ait optimum pH ve katalizör miktarı değerleri de tespit edildi.

Kaynakça

  • Abazari R., Mahjoub A.R., Sanati S., 2016. “Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: synthesis of a core–shell structure via a novel and mild route for photocatalytic degradation of toxic dyes”, J. Mol. Liq. 223,1133–1142. Adeleke, J.T., Theivasanthi T., Thiruppathi M., Swaminathan M., Akomolafe T., Alabi A.B., 2018. “Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles”, Applied Surface Science, 455, 195-200. Amorim, C.C., Leão, M.M.D. Moreira, R.F.P.M., Fabris, J.D., Henriques, A.B., 2013. “Performance of blast furnace waste for azo dye degradation through photo-fentonlike processes”, Chem. Eng. J. 224, 59–66.
  • Biabani-Ravandi A., Rezaei M., 2012. “Low temperature CO oxidation over Fe-Co mixed oxide nanocatalysts”, Chem. Eng. J. 184, 141–146. Bozkurt Çırak B., Çağlar B., Kılınç T., Morkoç Karadeniz S., Erdoğan Y., Kılıç S., Kahveci E., Ekinci A.E., Çırak Ç., 2019. “Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity”, Materials Research Bulletin 109, 160-167. Carabineiro S.A.C., Bastos S.S.T., Órfão J.J.M., Pereira M.F.R., Delgado J.J., Figueiredo J.L., 2010. “Carbon monoxide oxidation catalysed by exotemplated manganese oxides”, Catal. Lett. 134,217–227. Chang J., Ma J., Ma Q.,. Zhang D, Qiao N., Hu M., Ma H., 2016. “Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite”, Appl. Clay Sci. 119, 132–140. Cheng H., Liu Q., Yang J., Ma S., Frost R.L., 2012. “The thermal behavior of kaolinite intercalation complexes-A review” Thermochim. Acta, 545, 1-13. Cottet L., Almeida C.A.P., Naidek N., Viante M.F., Lopes M.C., Debacher N.A., 2014. “Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media”, Appl. Clay Sci. 95,25–31. Çağlar B., 2012. “Structural characterization of kaolinite-nicotinamide intercalation composite”, Journal of Molecular Structure, 1020, 48–55. Çağlar B., Çırak Ç., Tabak A., Afşin B., Eren E., 2013. ‘‘Covalent grafting of pyridine-2-methanol into kaolinite layers’’, Journal of Molecular Structure , 1032, 12–22. Çağlar, B., Keleş Güner, E., Keleş, K., Özdokur, K.V., Çubuk, O., Çoldur, F., Çağlar, S., Topcu, C., Tabak, A., 2018. “Fe3O4 nanoparticles decorated smectite nanocomposite: characterization, photocatalytic and electrocatalytic activities”. Solid State Sci. 83, 122–136. De León M.A., Sergio M., Bussi J., 2013. Iron-pillared clays as catalysts for dye removal by the heterogeneous photo-Fenton technique, React. Kinet. Mech. Catal. 110, 101–117. Fakhri A., Azad M., Tahami S., 2017. “Degradation of toxin via ultraviolet and sunlight photocatalysis using ZnO quantum dots/CuO nanosheets composites: preparation and characterization studies”. J Mater Sci Mater Electron 28 (21) ,1–6. Fatimah I., Wang S., Wulandari D., 2011. “ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue”, Appl. Clay Sci. 53, 553–560. Gan P.P., Li S.F.Y., 2013. “Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process”, Chem. Eng. J. 229, 351–363.
  • Gayaa U.I., Abdullah A.H., Zainal Z., Husseın M.Z., 2009. “Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions”, Journal of Hazardous Materials 168, 57–63. Ghosh S., Goudar V.S., Padmalekha K.G., Bhat S.V. , Indi S.S., Vasan H.N., 2012. “ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism”. Rsc Adv 2(3):930–940. Gusain, R., Gupta K., Joshi P., Khatri O.P., 2019, “Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review”, Advances in Colloid and Interface Science, 272, 102009. Karlsson H.L., Cronholm P., Gustafsson J., Möller L., 2008. “Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes”, Chem. Res. Toxicol., 21, 9, 1726-1732. Kumar P., Joshi C., Barras A., Sieber B., Addad A., Boussekey L., Szunerits S., Boukherroub R., Suman L.J., 2017. “Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light”, Applied Catalysis B: Environmental, 205, 654-665. Kuşvuran E., Gulnaz O., Irmak S., Atanur O.M., Yavuz H.I., Erbatur O., 2004. “Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution”, J. Hazard Mater. 109, 85–93. Li, W. Wan D., Wang, Chen G. K., Hu Q., Lu L., 2016. “Heterogeneous Fenton degradation of Orange II by immobilization of Fe3O4 nanoparticles onto Al-Fe pillared bentonite”, Kor. J. Chem. Eng. 33, 1557–1564. Li X., Che Y., Lv Y., Liu F., Wang Y., Zhao C., Liu C., 2019. “Synthesis and characterization of CuZnO@GO nanocomposites and their enhanced antibacterial activity with visible light”, Journal of Sol-Gel Science and Technology, 89, 672–684. Mardani H.R., Forouzani M., Ziari M., Biparva P., 2015. “Visible light photo-degradation of methylene blue over Fe or Cu promoted ZnO nanoparticles”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 27-33. Navalon S., Alvaro M., Garcia H., 2010. “Heterogeneous Fenton catalysts based on clays, silicas and zeolites”, Appl. Catal. B Environ. 99, 1–26. Ptacek P., Kubatova D., Havlica J., Branstetr J., Soukal F., Opravil T., 2010. Powder Technol. 204 , 222. Rauf M.A., Meetani M.A., Hisaindee S., 2011. “An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination 276, 13–27. Reemtsma, T., Jekel, M., 2006. “Organic pollutants in the water cycle: properties, occurrence”, Analysis and Environmental Relevance of Polar Compounds. Roduner, E. 2006. “Size matters: why nanomaterials are different”. Chem. Soc. Rev. 35(7), 583–592. Saravanan R., Karthikeyan S., Gupta V.K., Sekaran G., Narayanan V., Stephen A., 2013. “Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination”, Mater. Sci. Eng. C 33, 91–98. Shekofteh-Gohari M., Habibi-Yangjeh A., 2015.“Ternary ZnO/ Ag3VO4/ Fe3O4/ nanocomposites: novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation, Solid State Sci. 48, 177–185. Shekofteh-Gohari M., Habibi-Yangjeh A., 2016. “Fabrication of novel magnetically separable visible-light-driven photocatalysts through photosensitization of Fe3O4/ZnO with CuWO4”, J. Ind. Eng. Chem. 44, 174–184. Wan D., Li W., Wang G., Chen K., Lu L., Hu Q., 2015. “Adsorption and heterogeneous degradation of rhodamine B on the surface of magnetic bentonite material”, Appl. Surf. Sci. 349, 988–996. Wan D., Wang G., Li W., Wei X., 2017. “Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity”, Appl. Surf. Sci. 413, 398–407. Wang W., Tadé M.O., Shao Z., 2015. “Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment”, Chem. Soc. Rev. 44, 5371–5408. Yang S., Yuan P., He H., Qin Z., Zhou Q., Zhu J., Liu D., 2012. Appl. Clay Sci. 62–63, 8. Zhou C.H., Zhang D., Tong D.S., Wu L.M., Yu W.H., Ismadji S., 2012. “Paper-like composites of cellulose acetate-organo-montmorillonite for removal of hazardous anionic dye in water”, Chem. Eng. J. 209, 223–234.
Toplam 3 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Eda Keleş Güner 0000-0002-4421-1315

Bülent Çağlar 0000-0002-6087-3685

Yayımlanma Tarihi 31 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 2

Kaynak Göster

APA Keleş Güner, E., & Çağlar, B. (2020). CuxZn(1-x)O Nanoparçacıklarıyla Dekore Edilmiş Kaolin Nanokompozitinin Sentezi, Karakterizasyonu ve Fotokatalitik Aktivitesi. Erzincan University Journal of Science and Technology, 13(2), 369-383. https://doi.org/10.18185/erzifbed.703223