BibTex RIS Kaynak Göster

TÜREV KONUSUNDA UYGULANAN MATEMATİKSEL MODELLEME YÖNTEMİNİN ORTAÖĞRETİM ÖĞRENCİLERİNİN AKADEMİK BAŞARILARINA VE ÖZ-DÜZENLEME BECERİLERİNE ETKİSİ

Yıl 2010, Cilt: 3 Sayı: 2, 221 - 247, 11.03.2014

Öz

Bu çalışmanın amacı orta öğretim öğrencilerinin akademik başarısına matematiksel modelleme yöntemi ile öğretimi yapılan türev konusunun etkisinin incelenmesi olup, yarı-deneysel yöntem kullanılmıştır. Bu amaçla araştırmacılar tarafından iki adet başarı testi geliştirilmiş olup bu testler Doğu Anadolu Bölgesinin orta ölçekli bir ilinde yer alan Fen Lisesi’ nde on ikinci sınıfta öğrenim gören iki şubedeki toplam 37 öğrenciye ön test ve son test olarak uygulanmıştır. Verilerin analizinde öğrencilerin akademik başarıları açısından anlamlı fark olup olmadığını tespit etmek için Mann-Whitney U Testi kullanılmış ve veriler SPSS programı ile analiz edilmiştir. Çalışmanın sonuçları, matematiksel modelleme yöntemi ile öğrenim alan öğrencilerin akademik başarısının arttığını göstermiştir.

Kaynakça

  • Altunışık, R., Coşkun, R., Bayraktaroğlu, S. ve Yıldırım, E. (2007). Sosyal Bilimlerde Araştırma Yöntemleri SPSS Uygulamalı. Sakarya Yayıncılık, 5. Baskı, Sakarya (S. 112-116).
  • Baki, A., 2006. Kuramdan Uygulamaya Matematik Eğitimi. Derya Kitabevi. Trabzon.
  • Barnett, R. A., Zeigler, M. R., and Byleen, K. E., 2005. Calculus for Business, Economics, Life Sciences and Social Sciences, Tenth Edition, Pearson Prentice Hall, 162.pp, 2. Example, 243. pp, 93. Question, 289. pp, 6. Example.
  • Berresford, G. C. And Rockett, A.M. (2004). Applied Calculus , Third Edition, Houghton Mifflin Company, Boston, 267 p.
  • Berry, J.S. and Houstan, S.K., 1995. Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
  • Bingölbali, E., 2008. Türev Kavramına İlişkin Öğrenme Zorlukları ve Kavramsal Anlama İçin Öneriler, 9. Bölüm, Matematiksel Kavram Yanılgıları ve Çözüm Önerileri, Ed: M.F. Özmantar, E. Bingölbali, H. Akkoç, Pegem Akademi, Ankara, 223-255.
  • Blomhİj, M. and Kjeldsen, T.H., 2006. Teaching mathematical modelling through project work. Zentralblatt Für Didactik Der Mathematic, 38 (2), 163 – 177.
  • Blum, W.ve Leib, D., (2007). How Do Students And Teachers Deal With Modelling Problems? (S. 222-231), (Ed: C. Haines, P. Galbraith, W. Blum, S. Khan), Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • Büyüköztürk, Ş., (2008). Sosyal Bilimler için Veri Analizi El Kitabı. İstatistik, Araştırma Deseni SPSS Uygulamaları ve Yorum, 9. Baskı, 155 s, Pegem Akademi, Ankara.
  • Jiang, Q., Xie, J. and Ye, Q., 2005. Mathematical modelling modules for calculus teaching. (S. 443-446), (Editörler: C. Haines, P. Galbraith, W. Blum, S. Khan), Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • Haghes-Hallett, D., Gleason, A. M., Gordon, S.P., Lomen, D.O., Lovelock, D. andMcCallum, W.G., 1992, Calculus. Preliminary Edition, John Wiley & Sons, Inc., United States of America, pp: 126, 6. Question.
  • Kaiser, G., Blomhİj, M. and Sriraman, B., 2006. Towards a didactical theory for mathematical modelling, Zentralblatt Für Didactik Der Mathematic, 38 (2), 82 – 85.
  • Kapur, J.N, 2005. Mathematical Modelling: Need, Techniqs, Classification and Simple İllustration, Mathematical Modelling, New Age International (P) Ltd, Publishers, New Delhi, 1-30.
  • Keskin, Ö.Ö., 2008. Ortaöğretim Matematik Öğretmen Adaylarının Matematiksel Modelleme Yapabilme Becerilerinin Geliştirilmesi Üzerine Bir Araştırma, Yayınlanmış Doktora Tezi, Gazi Üniversitesi. Eğitim Bilimleri Enstitüsü, Ankara.
  • Lesh, R. and Harel, G., 2003. Problem Solving, Modeling, and Local Conceptual Development. Mathematical Thinking and Learning, 5 (2and3), 157-189.
  • Lesh, R. and Lehrer, R., 2003. Models and modelling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5 (2and3). 109-129.
  • Lingefjärd, T., 2007. Mathematical Modelling in Teacher Education- Necessity or Unnecessarily. (S. 333-340), (Editörler: W. Blum, P.L. Galbraith, H.W. Henn, M. Niss), Modelling and Applications in Mathematics Education: 14 th ICMI Study, New York: Springer.
  • Maab, K., 2005. Modelling in class. What do we want the students to learn? (S. 63-78), (Ed: C. Haines, P. Galbraith, W. Blum, S. Khan) Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • McMillan, J.H. and Schumacher, S., 2006. Research in Education Evidence- Based Inquiry. Sixty Edition. Pearson Education, Boston, 21-49.
  • Matos, J.F., 1998. Mathematics Learning and Modelling: Theory and Practice. (S. 21-27), (Editörler: S. K. Houston, W. Blum, I. Huntley and N. Neil). Teaching and Learning Mathematical Modelling. Chichester, Albion Publishing.
  • MEB, 2005. Yeni Matematik Öğretim Programının Genel Amaçları.
  • http://MEB.meb.gov.tr adresinden 24.04.2009 tarihinde alındı.
  • Moscardini, A. O. (1989). The Identification and Teaching of Mathematical Modelling Skills. (S. 36-42), (Editörler: M, Niss, W, Blum ve I, Huntley), Modelling Applications and Applied Problem Solving. England: Halsted Pres.
  • Niss, M., 1989. Aims and Scobe of Mathematical Modelling in Mathematics Curriculum. (S. 22-31), (Ed: W. Blum, J. Berry, R. Biehler, I. Huntley, R. Kaiser-Messmer and K. Profke) Applications and Modelling in Learning and Teaching Mathematics, Chichester: Ellis Horwood.
  • Roorda, G., Vos, P. and Goedhart, M., 2005. The Concept of the derivative in modelling and applications. (S. 288-293), (Ed: C. Haines, P. Galbraith, W. Blum, S. Khan) Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • Selden, A., Selden, J., Hauk, S. and Mason, A., 1999. Mathematics Do Calculus students eventually learn to solve non-routine problems. Depatment of Technical Report, Tennessee Technological University, Cookeville
  • The Consortium for Foundation Mathematics, 2008. Mathematical Models with Applications, Texas Edition, Boston, 67-70.
  • Ubuz, B., 2001. First year engineering students’ learning of point of tangency, numerical calculation of gradients, and the approximate value of a function at a point through computers. Journal of Computers in Mathematics and Science Teaching, 20 (1), 113-137.
  • Voskoglou, M.G., 2006. The use of mathematical modelling as a tool for learning Mathematical. Quaderni di Ricerca in Didattica, 16.
  • Yılmaz, Y., 2009. Ortaöğretim Matematik 12 Ders Kitabı. Ed: M. Ünver, Oktay Yayıncılık, Ankara, 248 s.
  • Zandieh, M. 2006. A Theoretical and Framework for Analyzing Student Understanding of The Concept of Derivative. (S. 128-153), (Ed: E. Dubinsky, A. Schoenfeld, J. Kaput), Research in College Mathematics Education, IV. Providence, RI: American Mathematical Society. ****
Yıl 2010, Cilt: 3 Sayı: 2, 221 - 247, 11.03.2014

Öz

Kaynakça

  • Altunışık, R., Coşkun, R., Bayraktaroğlu, S. ve Yıldırım, E. (2007). Sosyal Bilimlerde Araştırma Yöntemleri SPSS Uygulamalı. Sakarya Yayıncılık, 5. Baskı, Sakarya (S. 112-116).
  • Baki, A., 2006. Kuramdan Uygulamaya Matematik Eğitimi. Derya Kitabevi. Trabzon.
  • Barnett, R. A., Zeigler, M. R., and Byleen, K. E., 2005. Calculus for Business, Economics, Life Sciences and Social Sciences, Tenth Edition, Pearson Prentice Hall, 162.pp, 2. Example, 243. pp, 93. Question, 289. pp, 6. Example.
  • Berresford, G. C. And Rockett, A.M. (2004). Applied Calculus , Third Edition, Houghton Mifflin Company, Boston, 267 p.
  • Berry, J.S. and Houstan, S.K., 1995. Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
  • Bingölbali, E., 2008. Türev Kavramına İlişkin Öğrenme Zorlukları ve Kavramsal Anlama İçin Öneriler, 9. Bölüm, Matematiksel Kavram Yanılgıları ve Çözüm Önerileri, Ed: M.F. Özmantar, E. Bingölbali, H. Akkoç, Pegem Akademi, Ankara, 223-255.
  • Blomhİj, M. and Kjeldsen, T.H., 2006. Teaching mathematical modelling through project work. Zentralblatt Für Didactik Der Mathematic, 38 (2), 163 – 177.
  • Blum, W.ve Leib, D., (2007). How Do Students And Teachers Deal With Modelling Problems? (S. 222-231), (Ed: C. Haines, P. Galbraith, W. Blum, S. Khan), Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • Büyüköztürk, Ş., (2008). Sosyal Bilimler için Veri Analizi El Kitabı. İstatistik, Araştırma Deseni SPSS Uygulamaları ve Yorum, 9. Baskı, 155 s, Pegem Akademi, Ankara.
  • Jiang, Q., Xie, J. and Ye, Q., 2005. Mathematical modelling modules for calculus teaching. (S. 443-446), (Editörler: C. Haines, P. Galbraith, W. Blum, S. Khan), Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • Haghes-Hallett, D., Gleason, A. M., Gordon, S.P., Lomen, D.O., Lovelock, D. andMcCallum, W.G., 1992, Calculus. Preliminary Edition, John Wiley & Sons, Inc., United States of America, pp: 126, 6. Question.
  • Kaiser, G., Blomhİj, M. and Sriraman, B., 2006. Towards a didactical theory for mathematical modelling, Zentralblatt Für Didactik Der Mathematic, 38 (2), 82 – 85.
  • Kapur, J.N, 2005. Mathematical Modelling: Need, Techniqs, Classification and Simple İllustration, Mathematical Modelling, New Age International (P) Ltd, Publishers, New Delhi, 1-30.
  • Keskin, Ö.Ö., 2008. Ortaöğretim Matematik Öğretmen Adaylarının Matematiksel Modelleme Yapabilme Becerilerinin Geliştirilmesi Üzerine Bir Araştırma, Yayınlanmış Doktora Tezi, Gazi Üniversitesi. Eğitim Bilimleri Enstitüsü, Ankara.
  • Lesh, R. and Harel, G., 2003. Problem Solving, Modeling, and Local Conceptual Development. Mathematical Thinking and Learning, 5 (2and3), 157-189.
  • Lesh, R. and Lehrer, R., 2003. Models and modelling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5 (2and3). 109-129.
  • Lingefjärd, T., 2007. Mathematical Modelling in Teacher Education- Necessity or Unnecessarily. (S. 333-340), (Editörler: W. Blum, P.L. Galbraith, H.W. Henn, M. Niss), Modelling and Applications in Mathematics Education: 14 th ICMI Study, New York: Springer.
  • Maab, K., 2005. Modelling in class. What do we want the students to learn? (S. 63-78), (Ed: C. Haines, P. Galbraith, W. Blum, S. Khan) Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • McMillan, J.H. and Schumacher, S., 2006. Research in Education Evidence- Based Inquiry. Sixty Edition. Pearson Education, Boston, 21-49.
  • Matos, J.F., 1998. Mathematics Learning and Modelling: Theory and Practice. (S. 21-27), (Editörler: S. K. Houston, W. Blum, I. Huntley and N. Neil). Teaching and Learning Mathematical Modelling. Chichester, Albion Publishing.
  • MEB, 2005. Yeni Matematik Öğretim Programının Genel Amaçları.
  • http://MEB.meb.gov.tr adresinden 24.04.2009 tarihinde alındı.
  • Moscardini, A. O. (1989). The Identification and Teaching of Mathematical Modelling Skills. (S. 36-42), (Editörler: M, Niss, W, Blum ve I, Huntley), Modelling Applications and Applied Problem Solving. England: Halsted Pres.
  • Niss, M., 1989. Aims and Scobe of Mathematical Modelling in Mathematics Curriculum. (S. 22-31), (Ed: W. Blum, J. Berry, R. Biehler, I. Huntley, R. Kaiser-Messmer and K. Profke) Applications and Modelling in Learning and Teaching Mathematics, Chichester: Ellis Horwood.
  • Roorda, G., Vos, P. and Goedhart, M., 2005. The Concept of the derivative in modelling and applications. (S. 288-293), (Ed: C. Haines, P. Galbraith, W. Blum, S. Khan) Mathematical Modelling: ICTMA 12: Education, Engineering and Economics, Horwood Publishing, Chichester, UK.
  • Selden, A., Selden, J., Hauk, S. and Mason, A., 1999. Mathematics Do Calculus students eventually learn to solve non-routine problems. Depatment of Technical Report, Tennessee Technological University, Cookeville
  • The Consortium for Foundation Mathematics, 2008. Mathematical Models with Applications, Texas Edition, Boston, 67-70.
  • Ubuz, B., 2001. First year engineering students’ learning of point of tangency, numerical calculation of gradients, and the approximate value of a function at a point through computers. Journal of Computers in Mathematics and Science Teaching, 20 (1), 113-137.
  • Voskoglou, M.G., 2006. The use of mathematical modelling as a tool for learning Mathematical. Quaderni di Ricerca in Didattica, 16.
  • Yılmaz, Y., 2009. Ortaöğretim Matematik 12 Ders Kitabı. Ed: M. Ünver, Oktay Yayıncılık, Ankara, 248 s.
  • Zandieh, M. 2006. A Theoretical and Framework for Analyzing Student Understanding of The Concept of Derivative. (S. 128-153), (Ed: E. Dubinsky, A. Schoenfeld, J. Kaput), Research in College Mathematics Education, IV. Providence, RI: American Mathematical Society. ****
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Meryem Özturan Sağırlı

Uğur Kırmacı

Safure Bulut

Yayımlanma Tarihi 11 Mart 2014
Yayımlandığı Sayı Yıl 2010 Cilt: 3 Sayı: 2

Kaynak Göster

APA Özturan Sağırlı, M., Kırmacı, U., & Bulut, S. (2014). TÜREV KONUSUNDA UYGULANAN MATEMATİKSEL MODELLEME YÖNTEMİNİN ORTAÖĞRETİM ÖĞRENCİLERİNİN AKADEMİK BAŞARILARINA VE ÖZ-DÜZENLEME BECERİLERİNE ETKİSİ. Erzincan University Journal of Science and Technology, 3(2), 221-247.