BibTex RIS Kaynak Göster

SOME CONVEX FAMILIES OF MULTIVALENTLY ANALYTIC FUNCTIONS DEFINED BY USING CERTAIN OPERATORS OF FRACTIONAL DERIVATIVES

Yıl 2011, Cilt: 4 Sayı: 2, 135 - 144, 12.03.2014

Öz

Making use of fractional derivative operator, we introduce a general class  of functions which are analytic and p-valent in the open unit disk U, and obtain a necessary and sufficient condition for a function to be in the class , distortion bounds, inclusion property and the radii of p-valently close-to-convexity, p-valently starlikeness, p-valently convexity for this generalized class of p-valent function.

2000 Mathematics Subject Classification. Primary 30C45, 26A33, Secondary 33C05

Kaynakça

  • Altıntaş, O., Irmak H. and Srivastava, H. M. 1995. A Subclass of Analytic Functions Defined by Using Certain Operators of Fractional Calculus, Comput. Math. Appl. 30, 1-9.
  • Altıntaş, O., Irmak H. and Srivastava, H. M. 1995. fractional Calculus and Certain Starlike Functions With Negative Coefficients, Comput Math. Appl. 30 (2), 9-15.
  • Bhoosnurmath, S. S. and Swamy, S. R. 1985. Certain Classes of Analytic Functions With Negative Coefficients, Indian J. Math. 27, 89-98.
  • Chen, M. -P., Irmak H. and Srivastava, H. M. 1996. Some Multivalently Functions With Negative Coefficients Defined by Using a Differantial Operator, Pan Amer. Math. J.6 (2), 55-64.
  • Chen, M. -P., Irmak H. and Srivastava, H. M. 1997. Some Families of Multivalently Analytic Functions With Negative Coefficients, J. Math. Anal. Appl. 214 , 674-690.
  • Chen, M. -P., Irmak, H. and Srivastava, H. M. 1998. A Certain Subclass of Analytic Functions Involving Operators of Fractional Calculus, Comput. Math. Appl. 35 (5) , 83-91.
  • Duren, P. L. 1983. Univalent Functions, Grunlehren der Mathematischen Wissenschaften, Bd. 259, Springer-Verlag, New York, Berlin, Heiderberg, and Tokyo.
  • Goodman, A. W. 1983. Univalent Functions, Vols. I and II, Polygonal Publishing Conpany Washington, New Jersey.
  • Irmak, H. 1995. Certain Subclasses of P-Valently Starlike Functions With Negative Coefficients, Bull. Calcutta Math. Soc. 87, 589-598.
  • Irmak, H., Lee, S. H. and Cho, N. E. 1997. Some Multivalently Analytic Functions With Negative Coefficients and Their Subclasses Defined by Using a Differantial Operators, Kyungpook Math. J. 37 (1), 43-51.
  • Owa, S. 1978. On the Distortion Theorems. I, Kyungpook Maht. J., 18,53-59.
  • Owa, S. and Srivastava, H. M. 1987. Univalent and Starlike Generalized Hypergeometric Function, Canad. J. Math., 39, 1057-1077.
  • Srivastava, H. M. and Owa, S. 1992. (Editors), Current Topics in Analitic Function Theory, Word Scientific Publishing Company, Singapure, New Jersey, London, and HongKong.
Yıl 2011, Cilt: 4 Sayı: 2, 135 - 144, 12.03.2014

Öz

Kaynakça

  • Altıntaş, O., Irmak H. and Srivastava, H. M. 1995. A Subclass of Analytic Functions Defined by Using Certain Operators of Fractional Calculus, Comput. Math. Appl. 30, 1-9.
  • Altıntaş, O., Irmak H. and Srivastava, H. M. 1995. fractional Calculus and Certain Starlike Functions With Negative Coefficients, Comput Math. Appl. 30 (2), 9-15.
  • Bhoosnurmath, S. S. and Swamy, S. R. 1985. Certain Classes of Analytic Functions With Negative Coefficients, Indian J. Math. 27, 89-98.
  • Chen, M. -P., Irmak H. and Srivastava, H. M. 1996. Some Multivalently Functions With Negative Coefficients Defined by Using a Differantial Operator, Pan Amer. Math. J.6 (2), 55-64.
  • Chen, M. -P., Irmak H. and Srivastava, H. M. 1997. Some Families of Multivalently Analytic Functions With Negative Coefficients, J. Math. Anal. Appl. 214 , 674-690.
  • Chen, M. -P., Irmak, H. and Srivastava, H. M. 1998. A Certain Subclass of Analytic Functions Involving Operators of Fractional Calculus, Comput. Math. Appl. 35 (5) , 83-91.
  • Duren, P. L. 1983. Univalent Functions, Grunlehren der Mathematischen Wissenschaften, Bd. 259, Springer-Verlag, New York, Berlin, Heiderberg, and Tokyo.
  • Goodman, A. W. 1983. Univalent Functions, Vols. I and II, Polygonal Publishing Conpany Washington, New Jersey.
  • Irmak, H. 1995. Certain Subclasses of P-Valently Starlike Functions With Negative Coefficients, Bull. Calcutta Math. Soc. 87, 589-598.
  • Irmak, H., Lee, S. H. and Cho, N. E. 1997. Some Multivalently Analytic Functions With Negative Coefficients and Their Subclasses Defined by Using a Differantial Operators, Kyungpook Math. J. 37 (1), 43-51.
  • Owa, S. 1978. On the Distortion Theorems. I, Kyungpook Maht. J., 18,53-59.
  • Owa, S. and Srivastava, H. M. 1987. Univalent and Starlike Generalized Hypergeometric Function, Canad. J. Math., 39, 1057-1077.
  • Srivastava, H. M. and Owa, S. 1992. (Editors), Current Topics in Analitic Function Theory, Word Scientific Publishing Company, Singapure, New Jersey, London, and HongKong.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Nihat Yağmur

Ömer Çetin Bu kişi benim

Hüseyin Irmak

Yayımlanma Tarihi 12 Mart 2014
Yayımlandığı Sayı Yıl 2011 Cilt: 4 Sayı: 2

Kaynak Göster

APA Yağmur, N., Çetin, Ö., & Irmak, H. (2014). SOME CONVEX FAMILIES OF MULTIVALENTLY ANALYTIC FUNCTIONS DEFINED BY USING CERTAIN OPERATORS OF FRACTIONAL DERIVATIVES. Erzincan University Journal of Science and Technology, 4(2), 135-144.