BibTex RIS Kaynak Göster

FEN EĞİTİMİ ALAN ÖĞRENCİLERİN s, p ve d ORBİTALLERİNİ ANLAMA DÜZEYLERİ

Yıl 2012, Cilt: 5 Sayı: 2, 151 - 163, 18.03.2014

Öz

Bu çalışmanın amacı; dört yıl boyunca (sekiz yarıyıl) fen alanında eğitim alan öğrencilerin sınıf bazında s, p ve d orbitallerini anlama düzeylerinin belirlenmesine yöneliktir. Araştırmanın örneklemi, üç farklı üniversitenin eğitim fakültesindeki Fen Bilgisi eğitiminde öğrenim gören birinci, ikinci, üçüncü ve dördüncü sınıf öğrencilerinden oluşmaktadır. Çalışma, 2010–2011 öğretim yılı ikinci yarıyıl sonunda toplam 367 öğrenciye uygulanmıştır. Çalışmada s, p ve d orbitallerin şekillerinin çizimiyle ilgili sorular sorulmuştur. Elde edilen veriler nicel ve nitel olarak değerlendirilmiştir. Nicel olarak veriler grafikler halinde verilmiştir. Nitelde ise öğrencilerin sınıflar bazında en fazla hata yapmış oldukları çizimler örnekler halinde verilmiştir. Bulgular sekiz dönem boyunca fen ve teknoloji eğitimi alan öğrencilerinin atom ünitesini iyi anlayamadıkları görülmüştür.

Kaynakça

  • Amann, A. (1992). Must a molecule have a shape?, South African Journal of Chemistry, 45, 29–38.
  • Brion, C.E., Cooper, G., Zheng, Y., Litvinyuk, L.V., & McCarthy, I.E. (2001). Imaging of orbital electron densities by electron momentum spectrsocopy—a chemical interpretation of the binary (e, 2e) reaction, Chemical Physics, 70, 13–30.
  • Coskun, E. & Alkan, M. (2010). Evaluation of learning and teaching process in Turkish courses, International Electronic Journal of Elementary Education, 2, 3, 387-407.
  • Dicks, A. P. (2011). Shake For Sigma, Pray For Pi: Classroom Orbital Overlap Analogies, Journal of Chemical Education, 88, 4, 426-427.
  • French, S., Krause, D. (2006). Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford.
  • Georgios, T. and Georgios, P. ( 2002). Quantum-Chemical Concepts: Are They Suitable For Secondary Students?, Chemistry Education: Research and Practice In Europe , 3, 2, 129-144.
  • Grushow, A. (2011). Is i t Time to Retire the Hybrid Atomic Orbital?, Journal of Chemical Education, 88, 7, 860-862.
  • Humphreys, C. J. (1999). Electron seen in orbit, Nature, 401, 49–52.
  • Itatani, J., Levesque, J., Zeidler, D., Niikura, H., Pe´pin, H., Kieffer, J.C., Corkum, P.B., Villeneuve, D.M. (2004). Tomographic imaging of molecular orbitals, Nature, 432, 867–871.
  • Jacoby, M. (1999). Picture-perfect orbitals, Chemical & Engineering News, 77, 36, 8-10.
  • Jenkins, Z. (2003). Do you need to believe in orbitals to use them?: realism and the autonomy of chemistry, Philosophy of Science, 70, 1052–1062.
  • Laurikainen, K.V., Montonen, C., Sunnarborg, K. (1994). Symposium on the Foundations of Modern Physics, Editions Frontieres.
  • Kochen, S., Specker, E. (1967). The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics, 17, 59–87.
  • Labarca, M., Lombardi O. (2005). The ontological autonomy of the chemical world, Foundations of Chemistry, 7, 125–48.
  • Liegener, C.M., Del Re, G. (1987a). The relation of chemistry to other Şelds of science: atomism, reductionism, and inversion of reduction, Epistemologia, 10, 269–284.
  • Liegener, C. M., Del Re, G. (1987b). Chemistry versus physics, the reduction myth, and the unity of science, Journal for General Philosophy of Science, 18, 1-2, 165–174.
  • Litvinyuk, I.V., Zheng, Y., Brion, C. E. (2000). Valence shell orbital imaging in adamantane by electron momentum spectroscopy and quantum chemical calculations, Chemical Physics, 253, 41–50.
  • Lombardi, O., Labarca, M. (2005). The ontological autonomy of the chemical world, Foundations of Chemistry, 7, 125–148.
  • Lombardi, O., Labarca, M. (2006). The ontological autonomy of the chemical world: a response to Needham, Foundations of Chemistry, 8, 81–92.
  • Matta, C.F., Gillespie, R.J. (2002). Understanding and interpreting molecular electron density distributions, Journal of Chemical Education, 79, 1141– 1152.
  • Nakıpoğlu, C. (2003). Instructional Misconceptions Of Turkish Prospective Chemistry Teachers About Atomic Orbitals And Hybridization Chemistry Education, Research And Practice, 4, 2, 171-188.
  • Ostrosky, V. N. (2005). Towards a philosophy of approximations in the ‘exact’ sciences. Hyle-Int, Journal of Chemical Education, 11, 101–126.
  • Özden, M., (2007). Kimya Öğretmenlerinin Kimya Öğretiminde Karşılaştıkları Sorunların Nitel ve Nicel Yönden Değerlendirilmesi: Adıyaman ve Malatya İlleri Örneği, Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 22,2, 40-53.
  • Pascual, J. I., Go´mez-Herrero, J., Rogero, C., Baro´, A. M., Sa´nchez-Portal, D., Artacho, E., Ordejo´ n, P., Soler, J. M. (2000). Seeing molecular orbitals, Chemical Physics Letters, 321, 78-82.
  • Petrucci, H. R., Harwood, W. S. (1993). Genel Kimya: Prensipler ve Modern Uygulamalar. (Uyar, T. ve Aksoy, S., Çev.). Ankara: Palme Yayıncılık.
  • Primas, H. (1983). Chemistry, Quantum Mechanics and Reductionism, Springer, Berlin.
  • Primas, H. (1998). Emergence in exact natural sciences, Acta Polytech Scand, 91, 83–98.
  • Scerri, E. R. (2000). Have orbitals really been observed?, Journal of Chemical Education, 77, 1492–1494.
  • Scerri, E. R. (2001). The recently claimed observation of atomic orbitals and some related philosophical issues, Philosophy of Science, 68, 76–88.
  • Schwarz, W. H. E. (2006). Measuring orbitals: provocation or reality?, Angewandte Chemie International Edition, 45, 1508–1517.
  • Schwarz, W. H. E. (2006). Measuring orbitals: provocation or reality?,
  • Angewandte Chemie International Edition, 45, 1508–1517.
  • Spence, J. C., O’Keefe, M., Zuo, J. M. (2001). Have orbitals really been observed?, Journal of Chemical Education, 78, 877.
  • Stefani, C., Tsaparlis, G. (2009). Students’ Levels of Explanations, Models, and Phenomenographic Study, Journal of Research in Science Teaching, 46, 520-536. in Basic Quantum Chemistry: A
  • Tsaparlis, G., Papaphotis, G. (2009). High school students' conceptual difficulties and attempts at conceptual change: The case of basic quantum chemical concepts, International Journal of Science Education, 31, 895-930.
  • Vemulapalli, G. K., Byerly, H. (1999). Remnants of reductionism, Foundations of Chemistry, 1, 17–41.
  • Wang, S. G., Schwarz, W. H. E. (2000). On closed-shell interactions, polar covalences, d shell holes, and direct images of orbitals: the case of cuprite, Angewandte Chemie International Edition, 39, 1757–1762.
  • Wooley, R. G. (1978). Must a molecule have a shape?, Journal of American Chemical Society, 100, 1073–1078.
  • Wooley, R.G. (1982). Natural optical activity and the molecular hypothesis, Structure Bonding, 52, 1–35.
  • Yam, P. (1999). Seeing the bonds, Scientific American, 281, 28.
  • Zuo, J.M., Kim, M., O’Keefe, M., Spence, J.C.H. (1999). Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O, Nature, 401, 49–52.
  • Zurer, P. (1999). Chemistry’s top Şve achievements, Chemical & Engineering News, 77, 38–40. EK1:
  • Aşağıda verilen eksenleri kullanarak 1s, 2p ve 3d orbitallerinin
  • şekillerini çiziniz. ****
Yıl 2012, Cilt: 5 Sayı: 2, 151 - 163, 18.03.2014

Öz

Kaynakça

  • Amann, A. (1992). Must a molecule have a shape?, South African Journal of Chemistry, 45, 29–38.
  • Brion, C.E., Cooper, G., Zheng, Y., Litvinyuk, L.V., & McCarthy, I.E. (2001). Imaging of orbital electron densities by electron momentum spectrsocopy—a chemical interpretation of the binary (e, 2e) reaction, Chemical Physics, 70, 13–30.
  • Coskun, E. & Alkan, M. (2010). Evaluation of learning and teaching process in Turkish courses, International Electronic Journal of Elementary Education, 2, 3, 387-407.
  • Dicks, A. P. (2011). Shake For Sigma, Pray For Pi: Classroom Orbital Overlap Analogies, Journal of Chemical Education, 88, 4, 426-427.
  • French, S., Krause, D. (2006). Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford.
  • Georgios, T. and Georgios, P. ( 2002). Quantum-Chemical Concepts: Are They Suitable For Secondary Students?, Chemistry Education: Research and Practice In Europe , 3, 2, 129-144.
  • Grushow, A. (2011). Is i t Time to Retire the Hybrid Atomic Orbital?, Journal of Chemical Education, 88, 7, 860-862.
  • Humphreys, C. J. (1999). Electron seen in orbit, Nature, 401, 49–52.
  • Itatani, J., Levesque, J., Zeidler, D., Niikura, H., Pe´pin, H., Kieffer, J.C., Corkum, P.B., Villeneuve, D.M. (2004). Tomographic imaging of molecular orbitals, Nature, 432, 867–871.
  • Jacoby, M. (1999). Picture-perfect orbitals, Chemical & Engineering News, 77, 36, 8-10.
  • Jenkins, Z. (2003). Do you need to believe in orbitals to use them?: realism and the autonomy of chemistry, Philosophy of Science, 70, 1052–1062.
  • Laurikainen, K.V., Montonen, C., Sunnarborg, K. (1994). Symposium on the Foundations of Modern Physics, Editions Frontieres.
  • Kochen, S., Specker, E. (1967). The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics, 17, 59–87.
  • Labarca, M., Lombardi O. (2005). The ontological autonomy of the chemical world, Foundations of Chemistry, 7, 125–48.
  • Liegener, C.M., Del Re, G. (1987a). The relation of chemistry to other Şelds of science: atomism, reductionism, and inversion of reduction, Epistemologia, 10, 269–284.
  • Liegener, C. M., Del Re, G. (1987b). Chemistry versus physics, the reduction myth, and the unity of science, Journal for General Philosophy of Science, 18, 1-2, 165–174.
  • Litvinyuk, I.V., Zheng, Y., Brion, C. E. (2000). Valence shell orbital imaging in adamantane by electron momentum spectroscopy and quantum chemical calculations, Chemical Physics, 253, 41–50.
  • Lombardi, O., Labarca, M. (2005). The ontological autonomy of the chemical world, Foundations of Chemistry, 7, 125–148.
  • Lombardi, O., Labarca, M. (2006). The ontological autonomy of the chemical world: a response to Needham, Foundations of Chemistry, 8, 81–92.
  • Matta, C.F., Gillespie, R.J. (2002). Understanding and interpreting molecular electron density distributions, Journal of Chemical Education, 79, 1141– 1152.
  • Nakıpoğlu, C. (2003). Instructional Misconceptions Of Turkish Prospective Chemistry Teachers About Atomic Orbitals And Hybridization Chemistry Education, Research And Practice, 4, 2, 171-188.
  • Ostrosky, V. N. (2005). Towards a philosophy of approximations in the ‘exact’ sciences. Hyle-Int, Journal of Chemical Education, 11, 101–126.
  • Özden, M., (2007). Kimya Öğretmenlerinin Kimya Öğretiminde Karşılaştıkları Sorunların Nitel ve Nicel Yönden Değerlendirilmesi: Adıyaman ve Malatya İlleri Örneği, Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 22,2, 40-53.
  • Pascual, J. I., Go´mez-Herrero, J., Rogero, C., Baro´, A. M., Sa´nchez-Portal, D., Artacho, E., Ordejo´ n, P., Soler, J. M. (2000). Seeing molecular orbitals, Chemical Physics Letters, 321, 78-82.
  • Petrucci, H. R., Harwood, W. S. (1993). Genel Kimya: Prensipler ve Modern Uygulamalar. (Uyar, T. ve Aksoy, S., Çev.). Ankara: Palme Yayıncılık.
  • Primas, H. (1983). Chemistry, Quantum Mechanics and Reductionism, Springer, Berlin.
  • Primas, H. (1998). Emergence in exact natural sciences, Acta Polytech Scand, 91, 83–98.
  • Scerri, E. R. (2000). Have orbitals really been observed?, Journal of Chemical Education, 77, 1492–1494.
  • Scerri, E. R. (2001). The recently claimed observation of atomic orbitals and some related philosophical issues, Philosophy of Science, 68, 76–88.
  • Schwarz, W. H. E. (2006). Measuring orbitals: provocation or reality?, Angewandte Chemie International Edition, 45, 1508–1517.
  • Schwarz, W. H. E. (2006). Measuring orbitals: provocation or reality?,
  • Angewandte Chemie International Edition, 45, 1508–1517.
  • Spence, J. C., O’Keefe, M., Zuo, J. M. (2001). Have orbitals really been observed?, Journal of Chemical Education, 78, 877.
  • Stefani, C., Tsaparlis, G. (2009). Students’ Levels of Explanations, Models, and Phenomenographic Study, Journal of Research in Science Teaching, 46, 520-536. in Basic Quantum Chemistry: A
  • Tsaparlis, G., Papaphotis, G. (2009). High school students' conceptual difficulties and attempts at conceptual change: The case of basic quantum chemical concepts, International Journal of Science Education, 31, 895-930.
  • Vemulapalli, G. K., Byerly, H. (1999). Remnants of reductionism, Foundations of Chemistry, 1, 17–41.
  • Wang, S. G., Schwarz, W. H. E. (2000). On closed-shell interactions, polar covalences, d shell holes, and direct images of orbitals: the case of cuprite, Angewandte Chemie International Edition, 39, 1757–1762.
  • Wooley, R. G. (1978). Must a molecule have a shape?, Journal of American Chemical Society, 100, 1073–1078.
  • Wooley, R.G. (1982). Natural optical activity and the molecular hypothesis, Structure Bonding, 52, 1–35.
  • Yam, P. (1999). Seeing the bonds, Scientific American, 281, 28.
  • Zuo, J.M., Kim, M., O’Keefe, M., Spence, J.C.H. (1999). Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O, Nature, 401, 49–52.
  • Zurer, P. (1999). Chemistry’s top Şve achievements, Chemical & Engineering News, 77, 38–40. EK1:
  • Aşağıda verilen eksenleri kullanarak 1s, 2p ve 3d orbitallerinin
  • şekillerini çiziniz. ****
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kemal Doymuş

Yasemin Koç Bu kişi benim

Adem Akkuş

Fulya Başaran Bu kişi benim

Yusuf Zorlu

Yayımlanma Tarihi 18 Mart 2014
Yayımlandığı Sayı Yıl 2012 Cilt: 5 Sayı: 2

Kaynak Göster

APA Doymuş, K., Koç, Y., Akkuş, A., Başaran, F., vd. (2014). FEN EĞİTİMİ ALAN ÖĞRENCİLERİN s, p ve d ORBİTALLERİNİ ANLAMA DÜZEYLERİ. Erzincan University Journal of Science and Technology, 5(2), 151-163.