Araştırma Makalesi
BibTex RIS Kaynak Göster

The Solutions of Caputo-Fabrizio Random Fractional Ordinary Differential Equations by Aboodh Transform Method

Yıl 2025, Cilt: 18 Sayı: 1, 149 - 170, 28.03.2025
https://doi.org/10.18185/erzifbed.1543499

Öz

The primary objective of the paper is to employ the Aboodh transformation to solve Caputo-Fabrizio ordinary fractional differential equations. Furthermore, the methodology described is used to solve some common fractional differential equations. Analyzed using the Aboodh Transformation Method are random ordinary differential equations derived by randomly picking the coefficients or initial conditions of Caputo-Fabrizio fractional ordinary differential equations. The initial conditions or coefficients of the equations are converted into random variables distributed according to Normal, Uniform, and Exponential distributions. The probability characteristics, including expected value, variance, coefficient of variation, and confidence interval, of the random ordinary differential equations solved are computed using the MATLAB (2013a) package software. The acquired results are then shown and discussed.

Proje Numarası

no

Kaynakça

  • [1] Aboodh, K.S. (2013). The New Integral Transform ''Aboodh Transform''. Global Journal of Pure and Applied Mathematics, 9(1), 35-43
  • [2] Aboodh, K.S. (2014). Application of New Transform "Aboodh Transform" to Partial Differential Equations. Global Journal of Pure and Applied Mathematics, 10(2), 249-254
  • [3] Benattıa, M.E., Kacem Belghaba, K. (2019). A Varıational Iteration Method for Solving Ordinary Differential Equations Using the Aboodh Transform, Global Journal of Pure and Applied Scıences, 25, 55-61
  • [4] Şahin Y., (2024). Solutions of Random Fractional Differential Equations Using Aboodh and Aboodh-Adomian Decomposition Method. Master's Thesis, Gümüşhane University, Postgraduate Education Institute
  • [5] Abdelilah K., Sedeeg, H., and Abdelrahim Mahgoub, Mohand M., (2016). Aboodh Transform Homotopy Perturbation Method For Solving System Of Nonlinear Partial Differential Equations, Mathematical Theory and Modeling 6,8
  • [6] Abdelbagy, A., Alshikhand Mohand M., Abdelrahim Mahgoub, (2016). A Comparative Study Between Laplace Transform and Two New Integrals “ELzaki” Transform and “Aboodh” Transform, Pure and Applied Mathematics Journal, 5(5), 145-150
  • [7] Verma, D., Alam, A., Singh,A. P. (2020). Applications of Aboodh Transform, International Research Journal of Innovations in Engineering and Technology, 4(6), 47-51
  • [8] Almardy, I. A., Farah, R. A., Alkeer, M. A., Aboodh, K. S., Osman, A. K., Mohammed, M. A. (2023). Aboodh Adomian Decomposition Method Applied To Logistic Differential Model, Journal of Positive School Psychology, 7(2), 482-488
  • [9] Asai, Y., Kloeden, P.E. (2013). Numerical schemes for random ODEs via stochastic differential equations. Commun. Appl. Anal, 17(3 & 4), 511–528
  • [10] Bekiryazıcı, Z., Merdan, M., Kesemen, T., Najmuldeen, M. (2016). Mathematical Modeling of Dengue Disease under Random Effects Mathematıcal Scıences and Applıcatıons E-Notes, 4 (2), 58-70.
  • [11] Merdan, M., Bekiryazıcı, Z., Kesemen, T., Khaniyev, T. (2017a). Deterministic stability and random behavior of a Hepatitis C model, PLoS ONE 12(7): e0181571
  • [12] Merdan, M., Bekiryazıcı, Z., Kesemen, T., Khaniyev, T. (2017b). Comparison of stochastic and random models for bacterial resistance Advances in Difference Equations, 133.
  • [13] Anaç, H., Merdan, M., Kesemen, T. (2020). Solving for the random component time-fractional partial differential equations with the new Sumudu transform iterative method SN Applied Sciences, , 2,1112
  • [14] Bekiryazıcı, Z., Merdan, M., Kesemen, T. (2021). Modification of the random differential transformation method and its applications to compartmental models, Communications in Statistics - Theory and Methods, 50:18, 4271-4292
  • [15] Merdan, M., Anaç, H., Kesemen, T. (2019). The new Sumudu transform iterative method for studying the random component time-fractional Klein-Gordon equation. Sigma J Eng Nat Sci 10(3), 343–354
  • [16] Bekiryazici Z., Kesemen T., Merdan M., Khaniyev T. (2022). A modification of approximate random characteristics for a model of Zika virus transmission, Thermal Science , 26(4A),3067-3077
  • [17] Anaç, H., Merdan, M., Bekiryazıcı, Z., Kesemen, T.(2019). Solution of Some Random Partial Differential Equations Using Differential Transform Method and Laplace-Padé Method. Gümüşhane University Science Institute Journal. 9(1), 108–118
  • [18] Alkan, A.,(2024). Analysis of Fractional Advection Equation with Improved Homotopy Analysis Method. Osmaniye Korkut Ata University Journal of Science Institute, 7(3), 1215-1229
  • [19] Alkan, A., Anaç, H.(2024). A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 9(10), 27979-27997
  • [20] Alkan, A., Anaç, H.(2024). The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 9(9), 25333-25359
  • [21] Alkan, A., (2022). Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation. Karamanoğlu Mehmetbey University Journal of Engineering and Natural Sciences, 4(2), 117-134
  • [22] Al-Refai, M., Pal, K. (2019). New Aspects of Caputo-Fabrizio Fractional Derivative, Progress in Fractional Differentiation and Applications an International Journal, Progr. Fract. Differ. Appl. 5(2), 157-166
  • [23] Sania Qureshi, S., A. Rangaig, N., Baleanu, D. (2019). New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator, Mathematics, 7(4), 374
  • [24] Owolabi, M., Atangana, K. A.(2017). Analysis and Application of New Fractional Adams–Bashforth Scheme With Caputo–Fabrizio Derivative, Chaos, Solitons & Fractals, 111-119
  • [25] Bhangale, N., B.Kachhia, K., Gómez-Aguilar, J. F.(2022). A New Iterative Method with ρ Laplace Transform for Solving Fractional Differential Equations with Caputo Generalized Fractional Derivative. Engineering with Computers, 38(3) ,2125–2138
  • [26] Caputo, M., Fabrizio, M. (2016). Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels. Progr. Fract. Differ. Appl. 2, 1-11
  • [27] Mboro Nchama, G. A. (2020). Properties of Caputo-Fabrizio Fractional Operators. New Trends in Mathematical Sciences. 1(8), 001-025
  • [28] Benattia, M.E., Belghaba, K. (2020). Application of The Aboodh Transform for Solving Fractional Delay Differential Equations. Universal Journal of Mathematics and Applications. 3(3), 93-101
  • [29] Ziane, D., Belgacem, R., Bokhari, A. (2019). A New Modified Adomian Decomposition Method for Nonlinear Partial Differential Equations. Open Journal of Mathematical Analysis.3(2),81-90
  • [30] Khaniyev, T., Ünver, İ., Küçük, Z., Kesemen T. (2017). Olasılık Kuramında Çözümlü Problemler, Nobel Akademik Yayıncılık.
  • [31] Akdeniz, F. (2014). Olasılık ve İstatistik, Akedemisyen Kitabevi, Ankara, 602s.

The Solutions of Caputo-Fabrizio Random Fractional Ordinary Differential Equations by Aboodh Transform Method

Yıl 2025, Cilt: 18 Sayı: 1, 149 - 170, 28.03.2025
https://doi.org/10.18185/erzifbed.1543499

Öz

Proje Numarası

no

Kaynakça

  • [1] Aboodh, K.S. (2013). The New Integral Transform ''Aboodh Transform''. Global Journal of Pure and Applied Mathematics, 9(1), 35-43
  • [2] Aboodh, K.S. (2014). Application of New Transform "Aboodh Transform" to Partial Differential Equations. Global Journal of Pure and Applied Mathematics, 10(2), 249-254
  • [3] Benattıa, M.E., Kacem Belghaba, K. (2019). A Varıational Iteration Method for Solving Ordinary Differential Equations Using the Aboodh Transform, Global Journal of Pure and Applied Scıences, 25, 55-61
  • [4] Şahin Y., (2024). Solutions of Random Fractional Differential Equations Using Aboodh and Aboodh-Adomian Decomposition Method. Master's Thesis, Gümüşhane University, Postgraduate Education Institute
  • [5] Abdelilah K., Sedeeg, H., and Abdelrahim Mahgoub, Mohand M., (2016). Aboodh Transform Homotopy Perturbation Method For Solving System Of Nonlinear Partial Differential Equations, Mathematical Theory and Modeling 6,8
  • [6] Abdelbagy, A., Alshikhand Mohand M., Abdelrahim Mahgoub, (2016). A Comparative Study Between Laplace Transform and Two New Integrals “ELzaki” Transform and “Aboodh” Transform, Pure and Applied Mathematics Journal, 5(5), 145-150
  • [7] Verma, D., Alam, A., Singh,A. P. (2020). Applications of Aboodh Transform, International Research Journal of Innovations in Engineering and Technology, 4(6), 47-51
  • [8] Almardy, I. A., Farah, R. A., Alkeer, M. A., Aboodh, K. S., Osman, A. K., Mohammed, M. A. (2023). Aboodh Adomian Decomposition Method Applied To Logistic Differential Model, Journal of Positive School Psychology, 7(2), 482-488
  • [9] Asai, Y., Kloeden, P.E. (2013). Numerical schemes for random ODEs via stochastic differential equations. Commun. Appl. Anal, 17(3 & 4), 511–528
  • [10] Bekiryazıcı, Z., Merdan, M., Kesemen, T., Najmuldeen, M. (2016). Mathematical Modeling of Dengue Disease under Random Effects Mathematıcal Scıences and Applıcatıons E-Notes, 4 (2), 58-70.
  • [11] Merdan, M., Bekiryazıcı, Z., Kesemen, T., Khaniyev, T. (2017a). Deterministic stability and random behavior of a Hepatitis C model, PLoS ONE 12(7): e0181571
  • [12] Merdan, M., Bekiryazıcı, Z., Kesemen, T., Khaniyev, T. (2017b). Comparison of stochastic and random models for bacterial resistance Advances in Difference Equations, 133.
  • [13] Anaç, H., Merdan, M., Kesemen, T. (2020). Solving for the random component time-fractional partial differential equations with the new Sumudu transform iterative method SN Applied Sciences, , 2,1112
  • [14] Bekiryazıcı, Z., Merdan, M., Kesemen, T. (2021). Modification of the random differential transformation method and its applications to compartmental models, Communications in Statistics - Theory and Methods, 50:18, 4271-4292
  • [15] Merdan, M., Anaç, H., Kesemen, T. (2019). The new Sumudu transform iterative method for studying the random component time-fractional Klein-Gordon equation. Sigma J Eng Nat Sci 10(3), 343–354
  • [16] Bekiryazici Z., Kesemen T., Merdan M., Khaniyev T. (2022). A modification of approximate random characteristics for a model of Zika virus transmission, Thermal Science , 26(4A),3067-3077
  • [17] Anaç, H., Merdan, M., Bekiryazıcı, Z., Kesemen, T.(2019). Solution of Some Random Partial Differential Equations Using Differential Transform Method and Laplace-Padé Method. Gümüşhane University Science Institute Journal. 9(1), 108–118
  • [18] Alkan, A.,(2024). Analysis of Fractional Advection Equation with Improved Homotopy Analysis Method. Osmaniye Korkut Ata University Journal of Science Institute, 7(3), 1215-1229
  • [19] Alkan, A., Anaç, H.(2024). A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 9(10), 27979-27997
  • [20] Alkan, A., Anaç, H.(2024). The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 9(9), 25333-25359
  • [21] Alkan, A., (2022). Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation. Karamanoğlu Mehmetbey University Journal of Engineering and Natural Sciences, 4(2), 117-134
  • [22] Al-Refai, M., Pal, K. (2019). New Aspects of Caputo-Fabrizio Fractional Derivative, Progress in Fractional Differentiation and Applications an International Journal, Progr. Fract. Differ. Appl. 5(2), 157-166
  • [23] Sania Qureshi, S., A. Rangaig, N., Baleanu, D. (2019). New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator, Mathematics, 7(4), 374
  • [24] Owolabi, M., Atangana, K. A.(2017). Analysis and Application of New Fractional Adams–Bashforth Scheme With Caputo–Fabrizio Derivative, Chaos, Solitons & Fractals, 111-119
  • [25] Bhangale, N., B.Kachhia, K., Gómez-Aguilar, J. F.(2022). A New Iterative Method with ρ Laplace Transform for Solving Fractional Differential Equations with Caputo Generalized Fractional Derivative. Engineering with Computers, 38(3) ,2125–2138
  • [26] Caputo, M., Fabrizio, M. (2016). Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels. Progr. Fract. Differ. Appl. 2, 1-11
  • [27] Mboro Nchama, G. A. (2020). Properties of Caputo-Fabrizio Fractional Operators. New Trends in Mathematical Sciences. 1(8), 001-025
  • [28] Benattia, M.E., Belghaba, K. (2020). Application of The Aboodh Transform for Solving Fractional Delay Differential Equations. Universal Journal of Mathematics and Applications. 3(3), 93-101
  • [29] Ziane, D., Belgacem, R., Bokhari, A. (2019). A New Modified Adomian Decomposition Method for Nonlinear Partial Differential Equations. Open Journal of Mathematical Analysis.3(2),81-90
  • [30] Khaniyev, T., Ünver, İ., Küçük, Z., Kesemen T. (2017). Olasılık Kuramında Çözümlü Problemler, Nobel Akademik Yayıncılık.
  • [31] Akdeniz, F. (2014). Olasılık ve İstatistik, Akedemisyen Kitabevi, Ankara, 602s.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Yasin Şahin 0009-0006-4349-7004

Mehmet Merdan 0000-0002-8509-3044

Proje Numarası no
Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 4 Eylül 2024
Kabul Tarihi 7 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Şahin, Y., & Merdan, M. (2025). The Solutions of Caputo-Fabrizio Random Fractional Ordinary Differential Equations by Aboodh Transform Method. Erzincan University Journal of Science and Technology, 18(1), 149-170. https://doi.org/10.18185/erzifbed.1543499