Araştırma Makalesi
BibTex RIS Kaynak Göster

KÂĞIT KATLAMANIN SEMİYOTİK ARABULUCULUK TEORİSİ AÇISINDAN İNCELENMESİ

Yıl 2020, Cilt: 19 Sayı: 73, 122 - 144, 26.01.2020
https://doi.org/10.17755/esosder.449914

Öz


Bu çalışmanın
amacı, matematik öğretimine yönelik bir teori olan Semiyotik Arabuluculuk
Teorisi’nin Türkiye’de tanıtılmasını sağlamak ve uygulanabilirliğine yönelik
bir örnek sunmaktır. Teorinin temel kavramlarının ve özelliklerinin
tanıtılmasının ardından, uygulanabilirliğini tartışmak adına; bir nesne olarak
seçilen kâğıdın; kâğıt katlama etkinliklerinde kullanımının semiyotik
potansiyeli analiz edilmiş ve bir simetri eksenine sahip dörtgenlerin
(ikizkenar yamuk ve deltoid) inşasında ve kavramsal olarak oluşturulmasında
ortaya çıkan işaretlerin analizi yapılmıştır. Çalışma 10. sınıfta okumakta olan
35 öğrenci ile gerçekleştirilen bir durum çalışmasıdır. Öğrenciler dörderli ve
beşerli gruplara ayrılmıştır. Bu makalede sadece bir grubun çalışması raporlanmıştır.
Kâğıt katlamanın semiyotik potansiyelinin analizi sonucunda öğrencilerin
çakışma, iz vasıtasıyla simetri, eşlik gibi kavramları zihinlerinde
canlandırmasına ve eşkenar dörtgen, kare, yamuk gibi bildikleri dörtgenlerin
özellikleri üzerine derin düşünmelerine yardımcı olan bir nesne olduğu
görülmüştür. Kâğıt, Semiyotik Arabuluculuk Teorisi’nin bir nesnesi olarak
kullanılabilecek özellikleri taşımaktadır. Söz konusu teorinin sınıflarda
kullanılması için ise öğretmenin yönlendirici rolünün ne denli önemli olduğu
belirlenmiştir.




Kaynakça

  • Alperin, R. C. (2000). A mathematical theory of origami constructions and numbers. New York Journal of Mathematics, 6, 119-133.
  • Auckly, D. ve Cleveland, J. (1995). Totally real origami and impossible paper folding. The American Mathematical Monthly, 102 (3), 215-226.
  • Aysever, R. L. (2004). Bu çağın metinleri. Hacettepe üniversitesi Edebiyat Fakültesi Dergisi, 21 (2), 91-100.
  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. İçinde L. English ve diğerleri (Eds.), Handbook of International Research in Mathematics Education, 2. Baskı (ss. 746-783). New York and London: Routledge.
  • Bussi, M. G. B., & Baccaglini-Frank, A. (2015). Geometry in early years: sowing seeds for a mathematical definition of squares and rectangles. ZDM Mathematics Education, 47(3), 391-405.
  • Bartolini Bussi, M. G., Bertolini, C. Ramploud, A. & Sun, X. (2017). Cultural transposition of Chinese lesson study to Italy: An exploratory study on fractions in a fourthgrade classroom, International Journal for Lesson and Learning Studies, 6 (4), 380-395,
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathitudes, 1 (1), 1-9.
  • Boz, B. (2017). İki boyutlu kağıtlardan üç boyutlu origami küpüne yolculuk. Journal of Inquiry Based Activities, 5(1), 20-33.
  • Çeziktürk-Kipel, Ö. (2017). Kâğıt şeritle düzgün beşgen origamisi: öğrenci cevaplarının matematiksel düşünce açısından içerik analizi. Kalem Eğitim ve İnsan Bilimleri Dergisi, 7(1), 159-182.
  • Dreyfus, T. (1991, Haziran). On the status of visual reasoning in mathematics and mathematics education. İçinde Proc. 15th Conf. of the Int. Group for the Psychology of Mathematics Education, 1, 33-48.
  • Duatepe-Paksu, A. (2017). Constructing a rhombus through paper folding. International Journal of Mathematical Education in Science and Technology, 48(5), 763-767.
  • Durmuş, S., (2004), Matematikte öğrenme güçlüklerinin saptanması üzerine bir çalışma, Kastamonu Eğitim Dergisi, 12(1), 125-128.
  • Duval, R. (2008). Eight problems for a semiotic approach in mathematics education. Semiotics in Mathematics Education: Epistemology, Historicity, Classroom, and Culture, 39-62.
  • Faggiano, E., Montone, M., ve Mariotti, M. A. (2016). Creating a synergy between manipulatives and virtual artefacts to conceptualize axial symmetry at primary school. İçinde Proceedings of PME, 40(2), 235-242.
  • Faggiano, E., Montone, A., ve Rossi, P. G. (2017). The synergy between manipulative and digital artefacts in a mathematics teaching activity: a co-disciplinary perspective. Journal of e-Learning and Knowledge Society, 13(2).
  • Geretschlager, R. (1995). Euclidean constructions and the geometry of origami. Mathematics Magazine, 68 (5), 357-371.
  • Güler, H. K. ve Altun, M (2018). Öğretmenlerin inançlarının davranışlarına ve etkili bir geometri dersinin işlenişine yansımaları. Kastamonu Education Journal, 26(4), 1345-1357. doi:10.24106/kefdergi.443854.
  • Harel, G. (1989) Learning and teaching linear algebra: difficulties and an alternative approach to visualizing concepts and processes. Focus on Learning Problems in Mathematics, 11(2), 139-148.
  • İnan, C., ve Erkuş, S. (2017). Geliştirilen sayı şeridi materyalinin ilkokul 4. sınıf öğrencilerinin matematik başarıları ve tutumlarına etkisinin incelenmesi. Electronic Turkish Studies, 12(35), 225-238.
  • Johnson, D.A. (1957). Paper folding for the mathematics class. National Council of Teachers of Mathematics. Washington.
  • Krier, J. L. (2007). Mathematics and origami. The ancient arts unite. http://math.uttyler.edu/nathan/classes/senior-seminar/JaemaKrier.pdf on 08.12.2015.
  • Kutluca, T., ve Akın, M. F. (2013). Somut materyallerle matematik öğretimi: dört kefeli cebir terazisi kullanımı üzerine nitel bir çalışma. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 4(1), 48-65.
  • Maschietto, M. (2015). The arithmetical machine Zero+ 1 in mathematics laboratory: instrumental genesis and semiotic mediation. International Journal of Science and Mathematics Education, 13(1), 121-144.
  • Mariotti, M. A., ve Cerulli, M. (2001). Semiotic mediation for algebra teaching and learning. İçinde 25th conference of the International Group for the Psychology of Mathematics Education (PME), 225-232.
  • Mariotti, M. A. (2009). Artifacts and signs after aVygotskian perspective: the role of the teacher. ZDM Mathematics Education, 41, 427-440.
  • Mariotti, M. A. (2014, 11-14 Ağustos). From using artefacts to mathematical meanings: the semiotic mediation process. YESS-7, Kassel.
  • Montone, A., Faggiano, E., ve Mariotti, M. A. (2017). The design of a teaching sequence on axial symmetry, involving a duo of artefacts and exploiting the synergy resulting from alternate use of these artefacts. İçinde Proceedings of CERME, 10.
  • Moreno-Armella, L., ve Santos-Trigo, M. (2008). Democratic access and use of powerful mathematics in an emerging country. İçinde L. English ve diğerleri. (Ed.), Handbook of International Research in Mathematics Education, second edition (ss. 319-351). New York and London: Routledge.
  • Olson, A. T. (1975). Mathematics through paper folding. National Council of Teachers of Mathematics. Washington.
  • Polat, S. (2013). Origami ile matematik öğretimi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10 (21), 15-27.
  • Presmeg, N., Radford, L., Roth, W. M., ve Kadunz, G. (2016). Semiotics in Theory and Practice in Mathematics Education. İçinde Semiotics in Mathematics Education (ss. 5-29). Springer International Publishing.
  • Prigge, G. R. (1978). The differential effects of the use of manipulative aids on the learning of geometric concepts by elementary school children. Journal for Research in Mathematics Education, 9 (5), 361 367.
  • Schoenfeld, A. (2002). Research methods in (mathematics) education. İçinde L. D. English (Ed.), Handbook of international research in mathematics education. (ss. 433-488). New Jersey: Lawrence Erlbaum Associates.
  • Şay, R. ve Akkoç, H. (2016). Mediating role of technology: prospective upper secondary mathematicsteachers’ practice. İçinde G. Adams (Ed.) Proceedings of the British Society for Research into Learning Mathematics, 36(1), 88-93.
  • Tatar, E. ve Dikici, R. (2008). Matematik eğitiminde öğrenme güçlükleri. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(9), 183-193.
  • Tuğrul, B., ve Kavici, M. (2002). Kağıt katlama sanatı origami ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 11(11), 1-17.
  • Vygotsky, L. S. (1978). Mind in society. Hardvard University Press.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. (6. Baskı). Seçkin Yayınları: Ankara.

INVESTIGATION PAPER FOLDING IN TERMS OF THEORY OF SEMIOTIC MEDIATION

Yıl 2020, Cilt: 19 Sayı: 73, 122 - 144, 26.01.2020
https://doi.org/10.17755/esosder.449914

Öz

The aim of this study is to introduce Theory of
Semiotic Mediation, which is a theory regarding mathematics teaching, in Turkey
and present an example regarding its practice. After describing the main
characteristics and concepts of Theory of Semiotic Mediation, in order to
discuss the practice of the theory, semiotic potential of a sheet of paper,
which was chosen as an artifact of Theory of Semiotic Mediation, was analyzed
in paper folding activities and also the signs were analyzed that occurred in
the building and conceptual constructing of quadrilaterals with only one
symmetry axe (isosceles trapezoid and rhombus). The study was a case study
which was carried out with 35 10th grade students. Students were separated four
or five each. Only one groups’ activity was reported in this paper. As a result
of the analysis of the semiotic potential of it, it has been seen that paper
folding is an artifact that helps students to reconstruct concepts such
symmetry and equality by means of coincide and crease and helps to think deeply
on the quadrilaterals as rectangle, square, trapezoid and etc. which students
have already known. A sheet of paper could be used as an artifact of Theory of
Semiotic Mediation. In order to be used the mentioned theory in classes, it was
founded that teachers’ guidance role was quite essential.

Kaynakça

  • Alperin, R. C. (2000). A mathematical theory of origami constructions and numbers. New York Journal of Mathematics, 6, 119-133.
  • Auckly, D. ve Cleveland, J. (1995). Totally real origami and impossible paper folding. The American Mathematical Monthly, 102 (3), 215-226.
  • Aysever, R. L. (2004). Bu çağın metinleri. Hacettepe üniversitesi Edebiyat Fakültesi Dergisi, 21 (2), 91-100.
  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. İçinde L. English ve diğerleri (Eds.), Handbook of International Research in Mathematics Education, 2. Baskı (ss. 746-783). New York and London: Routledge.
  • Bussi, M. G. B., & Baccaglini-Frank, A. (2015). Geometry in early years: sowing seeds for a mathematical definition of squares and rectangles. ZDM Mathematics Education, 47(3), 391-405.
  • Bartolini Bussi, M. G., Bertolini, C. Ramploud, A. & Sun, X. (2017). Cultural transposition of Chinese lesson study to Italy: An exploratory study on fractions in a fourthgrade classroom, International Journal for Lesson and Learning Studies, 6 (4), 380-395,
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathitudes, 1 (1), 1-9.
  • Boz, B. (2017). İki boyutlu kağıtlardan üç boyutlu origami küpüne yolculuk. Journal of Inquiry Based Activities, 5(1), 20-33.
  • Çeziktürk-Kipel, Ö. (2017). Kâğıt şeritle düzgün beşgen origamisi: öğrenci cevaplarının matematiksel düşünce açısından içerik analizi. Kalem Eğitim ve İnsan Bilimleri Dergisi, 7(1), 159-182.
  • Dreyfus, T. (1991, Haziran). On the status of visual reasoning in mathematics and mathematics education. İçinde Proc. 15th Conf. of the Int. Group for the Psychology of Mathematics Education, 1, 33-48.
  • Duatepe-Paksu, A. (2017). Constructing a rhombus through paper folding. International Journal of Mathematical Education in Science and Technology, 48(5), 763-767.
  • Durmuş, S., (2004), Matematikte öğrenme güçlüklerinin saptanması üzerine bir çalışma, Kastamonu Eğitim Dergisi, 12(1), 125-128.
  • Duval, R. (2008). Eight problems for a semiotic approach in mathematics education. Semiotics in Mathematics Education: Epistemology, Historicity, Classroom, and Culture, 39-62.
  • Faggiano, E., Montone, M., ve Mariotti, M. A. (2016). Creating a synergy between manipulatives and virtual artefacts to conceptualize axial symmetry at primary school. İçinde Proceedings of PME, 40(2), 235-242.
  • Faggiano, E., Montone, A., ve Rossi, P. G. (2017). The synergy between manipulative and digital artefacts in a mathematics teaching activity: a co-disciplinary perspective. Journal of e-Learning and Knowledge Society, 13(2).
  • Geretschlager, R. (1995). Euclidean constructions and the geometry of origami. Mathematics Magazine, 68 (5), 357-371.
  • Güler, H. K. ve Altun, M (2018). Öğretmenlerin inançlarının davranışlarına ve etkili bir geometri dersinin işlenişine yansımaları. Kastamonu Education Journal, 26(4), 1345-1357. doi:10.24106/kefdergi.443854.
  • Harel, G. (1989) Learning and teaching linear algebra: difficulties and an alternative approach to visualizing concepts and processes. Focus on Learning Problems in Mathematics, 11(2), 139-148.
  • İnan, C., ve Erkuş, S. (2017). Geliştirilen sayı şeridi materyalinin ilkokul 4. sınıf öğrencilerinin matematik başarıları ve tutumlarına etkisinin incelenmesi. Electronic Turkish Studies, 12(35), 225-238.
  • Johnson, D.A. (1957). Paper folding for the mathematics class. National Council of Teachers of Mathematics. Washington.
  • Krier, J. L. (2007). Mathematics and origami. The ancient arts unite. http://math.uttyler.edu/nathan/classes/senior-seminar/JaemaKrier.pdf on 08.12.2015.
  • Kutluca, T., ve Akın, M. F. (2013). Somut materyallerle matematik öğretimi: dört kefeli cebir terazisi kullanımı üzerine nitel bir çalışma. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 4(1), 48-65.
  • Maschietto, M. (2015). The arithmetical machine Zero+ 1 in mathematics laboratory: instrumental genesis and semiotic mediation. International Journal of Science and Mathematics Education, 13(1), 121-144.
  • Mariotti, M. A., ve Cerulli, M. (2001). Semiotic mediation for algebra teaching and learning. İçinde 25th conference of the International Group for the Psychology of Mathematics Education (PME), 225-232.
  • Mariotti, M. A. (2009). Artifacts and signs after aVygotskian perspective: the role of the teacher. ZDM Mathematics Education, 41, 427-440.
  • Mariotti, M. A. (2014, 11-14 Ağustos). From using artefacts to mathematical meanings: the semiotic mediation process. YESS-7, Kassel.
  • Montone, A., Faggiano, E., ve Mariotti, M. A. (2017). The design of a teaching sequence on axial symmetry, involving a duo of artefacts and exploiting the synergy resulting from alternate use of these artefacts. İçinde Proceedings of CERME, 10.
  • Moreno-Armella, L., ve Santos-Trigo, M. (2008). Democratic access and use of powerful mathematics in an emerging country. İçinde L. English ve diğerleri. (Ed.), Handbook of International Research in Mathematics Education, second edition (ss. 319-351). New York and London: Routledge.
  • Olson, A. T. (1975). Mathematics through paper folding. National Council of Teachers of Mathematics. Washington.
  • Polat, S. (2013). Origami ile matematik öğretimi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10 (21), 15-27.
  • Presmeg, N., Radford, L., Roth, W. M., ve Kadunz, G. (2016). Semiotics in Theory and Practice in Mathematics Education. İçinde Semiotics in Mathematics Education (ss. 5-29). Springer International Publishing.
  • Prigge, G. R. (1978). The differential effects of the use of manipulative aids on the learning of geometric concepts by elementary school children. Journal for Research in Mathematics Education, 9 (5), 361 367.
  • Schoenfeld, A. (2002). Research methods in (mathematics) education. İçinde L. D. English (Ed.), Handbook of international research in mathematics education. (ss. 433-488). New Jersey: Lawrence Erlbaum Associates.
  • Şay, R. ve Akkoç, H. (2016). Mediating role of technology: prospective upper secondary mathematicsteachers’ practice. İçinde G. Adams (Ed.) Proceedings of the British Society for Research into Learning Mathematics, 36(1), 88-93.
  • Tatar, E. ve Dikici, R. (2008). Matematik eğitiminde öğrenme güçlükleri. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(9), 183-193.
  • Tuğrul, B., ve Kavici, M. (2002). Kağıt katlama sanatı origami ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 11(11), 1-17.
  • Vygotsky, L. S. (1978). Mind in society. Hardvard University Press.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. (6. Baskı). Seçkin Yayınları: Ankara.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eğitim Üzerine Çalışmalar
Bölüm Makaleler
Yazarlar

Hatice Kübra Güler Selek 0000-0002-6262-8421

Yayımlanma Tarihi 26 Ocak 2020
Gönderilme Tarihi 1 Ağustos 2018
Yayımlandığı Sayı Yıl 2020 Cilt: 19 Sayı: 73

Kaynak Göster

APA Güler Selek, H. K. (2020). KÂĞIT KATLAMANIN SEMİYOTİK ARABULUCULUK TEORİSİ AÇISINDAN İNCELENMESİ. Elektronik Sosyal Bilimler Dergisi, 19(73), 122-144. https://doi.org/10.17755/esosder.449914

   21765     

Elektronik Sosyal Bilimler Dergisi (Electronic Journal of Social Sciences), Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

ESBD Elektronik Sosyal Bilimler Dergisi (Electronic Journal of Social Sciences), Türk Patent ve Marka Kurumu tarafından tescil edilmiştir. Marka No:2011/119849.