Araştırma Makalesi
BibTex RIS Kaynak Göster

Pomza ve Diatomitin Portland Çimentosunun Basınç Dayanımına Etkilerinin ANFIS ile Tahmini

Yıl 2022, Cilt: 3 Sayı: 1, 18 - 25, 31.01.2022
https://doi.org/10.53608/estudambilisim.1051136

Öz

Bu çalışmada, çimento harçlarının basınç dayanımını tahmin etmek için uyarlamalı ağ tabanlı bulanık çıkarım sistemi (ANFIS) kullanılarak bir tahmin modeli geliştirilmiştir. Bu amaçla yapılacak olan çalışmada, Portland çimentosu (PÇ) ile içerisine pomza (%10-20), diatomit (%10-20) ve pomza + diatomit (%5+5-%10+10) ikame edilmiş olan toplam yedi farklı çimento ile elde edilen harçlarının 2, 7, 28, 90. hidratasyon günlerindeki basınç dayanımları standart çimento deneyleriyle belirlenmiştir. Deneyler sonucu elde edilen 168 veri eğitim için, bu deney sonuçlarının ortalamaları olan 28 veri de test için kullanılmıştır. ANFIS modelinde eğitim ve test aşamalarında hidratasyon günü, Portland çimento, pomza, diatomit ve su olarak 5 giriş parametresi ve çimento harçalarının basınç dayanımı olmak üzere 1 çıkış parametresi kullanılmıştır. Deneylerden elde edilen ve modelden elde edilen sonuçlarının kıyaslanmasında R2, MAPE ve RMSE olmak üzere üç farklı istatiksel yöntem kullanılmıştır. Elde edilen veriler, deney sonuçları ile ANFIS sonuçları arasında uyumun iyi olduğunu ve inşaat mühendisliğindeki uygulamalarda başarıyla uygulanabilirliğini göstermiştir.

Teşekkür

Yazarlar, bu modelde kullanılmak üzere doktora çalışmasına ait olan deneysel verilerini paylaşan Yılmaz Koçak ve İbrahim Pınarcıya teşekkür ederler.

Kaynakça

  • [1] Mohamed, M., & Tran, D. Q. (2021). Risk-based inspection for concrete pavement construction using fuzzy sets and bayesian networks. Automation in Construction, 128, 103761.
  • [2] Güvenç, U., Koçak, B., & Koçak, Y. (2021). Portland Kompoze Çimentosunun Priz Süresine Metakaolin Etkisinin Bulanık Mantıkla Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(2), 29-34.
  • [3] Gutierrez-Garcia, F. J., Alayon-Miranda, S., Gonzalez-Diaz, E., & Perez-Diaz, P. (2017). Fuzzy model for calculating of cement mortar ratios. DYNA, 92(6), 688-695.
  • [4] Koçak, B., Koçak, Y., & Yücedağ, İ. (2020). Prediction of Flexural Strength of Portland–Composite Cement Mortars Substituting Metakaolin Using Fuzzy Logic. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(4), 2377-2387.
  • [5] Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, 21(1), 21-30.
  • [6] Sevim, U. K., Bilgic, H. H., Cansiz, O. F., Ozturk, M., & Atis, C. D. (2021). Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques. Construction and Building Materials, 271, 121584.
  • [7] Ozcan, G., Kocak, Y., & Gulbandilar, E. (2017). Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models. Computers and Concrete, 19(3), 275-282.
  • [8] Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N., ... & Poi-Ngian, S. (2019). Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Applied Sciences, 9(24), 5534.
  • [9] McElroy, P. D., Bibang, H., Emadi, H., Kocoglu, Y., Hussain, A., & Watson, M. C. (2021). Artificial neural network (ANN) approach to predict unconfined compressive strength (UCS) of oil and gas well cement reinforced with nanoparticles. Journal of Natural Gas Science and Engineering, 88, 103816.
  • [10] Adesanya, E., Aladejare, A., Adediran, A., Lawal, A., & Illikainen, M. (2021). Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement and Concrete Composites, 124, 104265.
  • [11] Maqsoom, A., Aslam, B., Gul, M. E., Ullah, F., Kouzani, A. Z., Mahmud, M. A., & Nawaz, A. (2021). Using Multivariate Regression and ANN Models to Predict Properties of Concrete Cured under Hot Weather. Sustainability, 13(18), 10164.
  • [12] Sakthivel, P. B., Ravichandran, A., & Alagumurthi, N. (2016). Modelling and prediction of flexural strength of hybrid mesh and fiber reinforced cement-based composites using Artificial Neural Network (YSA). Int J GEOMATE Geotech Const Mat Env, 10, 1623-1635.
  • [13] Mansouri, I., & Kisi, O. (2015). Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Composites Part B: Engineering, 70, 247-255.
  • [14] Koçak, Y., & Gülbandılar, E. (2016). MgSO4 Etkisindeki Betonların Basınç Dayanımının ANFIS ile Tahmini. 8. International Aggregates Syposium, Dumlupınar Universitesi, Kütahya, Turkey, 251-262.
  • [15] Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of YSA and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501-4532.
  • [16] Amin, M. N., Javed, M. F., Khan, K., Shalabi, F. I., & Qadir, M. G. (2021). Modeling Compressive Strength of Eco-Friendly Volcanic Ash Mortar using Artificial Neural Networking. Symmetry, 13(11), 2009.
  • [17] TS EN 197-1. Çimento- Bölüm 1: Genel ÇimentolarBileşim, Özellikler ve Uygunluk Kriterleri. Türk Standartları, Ankara, 2012.
  • [18] TS EN-196-1. Çimento deney metodları-Bölüm 1: Dayanım tayini. Türk Standartları, Ankara, 2016.
  • [19] Temel R. (2017). Uçak Kara Kutusundan Alınan Veriler Kullanılarak Hücum Açısı Ve Mach Sayısının Ysa Ve Anfıs İle Tahmini. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • [20] Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, YSA, and ANFIS Techniques. Comput. Inf. Sci., 2(3), 127-136.
  • [21] Jang, J. S. (1996, September). Input selection for ANFIS learning. In Proceedings of IEEE 5th International Fuzzy Systems (Vol. 2, pp. 1493-1499). IEEE.
  • [22] Bhavani Chowdary, T., & Ranga Rao, V. (2021). Design and Analysis of Lightweight Alkali-Activated Slag and Fly Ash Geopolymer Mortars using ANFIS-SSO. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-14.

Prediction the Effects of Pumice and Diatomite on the Compressive Strength of Portland Cement with ANFIS

Yıl 2022, Cilt: 3 Sayı: 1, 18 - 25, 31.01.2022
https://doi.org/10.53608/estudambilisim.1051136

Öz

In this study, a estimation model was developed using Adaptive-Network Based Fuzzy Inference Systems (ANFIS) to predict the compressive strength of cement mortars. In the study to be carried out for this purpose, a total of seven different cements in which Portland cement (PÇ) was substituted with pumice (10-20%), diatomite (10-20%) and pumice + diatomite (5+5%-10+10%). The compressive strengths obtained from the mortars at the 2nd, 7th, 28th and 90th days of hydration were determined by standard cement tests. 168 data obtained as a result of the experiments were used for training, and 28 data, which are the averages of these experimental results, were used for testing. For the training and testing stages of the ANFIS model, 5 input parameters, namely hydration day, Portland cement, diatomite, pumice and water, and 1 output parameter, namely the compressive strength of cement mortars, were used. In the comparison of the experimental results and the results obtained from the model; three different statistical methods, namely R2, MAPE and RMSE, were used. The obtained data showed that there is a good agreement between the test results and the ANFIS results and that it can be successfully applied in civil engineering applications.

Kaynakça

  • [1] Mohamed, M., & Tran, D. Q. (2021). Risk-based inspection for concrete pavement construction using fuzzy sets and bayesian networks. Automation in Construction, 128, 103761.
  • [2] Güvenç, U., Koçak, B., & Koçak, Y. (2021). Portland Kompoze Çimentosunun Priz Süresine Metakaolin Etkisinin Bulanık Mantıkla Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(2), 29-34.
  • [3] Gutierrez-Garcia, F. J., Alayon-Miranda, S., Gonzalez-Diaz, E., & Perez-Diaz, P. (2017). Fuzzy model for calculating of cement mortar ratios. DYNA, 92(6), 688-695.
  • [4] Koçak, B., Koçak, Y., & Yücedağ, İ. (2020). Prediction of Flexural Strength of Portland–Composite Cement Mortars Substituting Metakaolin Using Fuzzy Logic. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(4), 2377-2387.
  • [5] Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, 21(1), 21-30.
  • [6] Sevim, U. K., Bilgic, H. H., Cansiz, O. F., Ozturk, M., & Atis, C. D. (2021). Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques. Construction and Building Materials, 271, 121584.
  • [7] Ozcan, G., Kocak, Y., & Gulbandilar, E. (2017). Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models. Computers and Concrete, 19(3), 275-282.
  • [8] Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N., ... & Poi-Ngian, S. (2019). Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Applied Sciences, 9(24), 5534.
  • [9] McElroy, P. D., Bibang, H., Emadi, H., Kocoglu, Y., Hussain, A., & Watson, M. C. (2021). Artificial neural network (ANN) approach to predict unconfined compressive strength (UCS) of oil and gas well cement reinforced with nanoparticles. Journal of Natural Gas Science and Engineering, 88, 103816.
  • [10] Adesanya, E., Aladejare, A., Adediran, A., Lawal, A., & Illikainen, M. (2021). Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement and Concrete Composites, 124, 104265.
  • [11] Maqsoom, A., Aslam, B., Gul, M. E., Ullah, F., Kouzani, A. Z., Mahmud, M. A., & Nawaz, A. (2021). Using Multivariate Regression and ANN Models to Predict Properties of Concrete Cured under Hot Weather. Sustainability, 13(18), 10164.
  • [12] Sakthivel, P. B., Ravichandran, A., & Alagumurthi, N. (2016). Modelling and prediction of flexural strength of hybrid mesh and fiber reinforced cement-based composites using Artificial Neural Network (YSA). Int J GEOMATE Geotech Const Mat Env, 10, 1623-1635.
  • [13] Mansouri, I., & Kisi, O. (2015). Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Composites Part B: Engineering, 70, 247-255.
  • [14] Koçak, Y., & Gülbandılar, E. (2016). MgSO4 Etkisindeki Betonların Basınç Dayanımının ANFIS ile Tahmini. 8. International Aggregates Syposium, Dumlupınar Universitesi, Kütahya, Turkey, 251-262.
  • [15] Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of YSA and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501-4532.
  • [16] Amin, M. N., Javed, M. F., Khan, K., Shalabi, F. I., & Qadir, M. G. (2021). Modeling Compressive Strength of Eco-Friendly Volcanic Ash Mortar using Artificial Neural Networking. Symmetry, 13(11), 2009.
  • [17] TS EN 197-1. Çimento- Bölüm 1: Genel ÇimentolarBileşim, Özellikler ve Uygunluk Kriterleri. Türk Standartları, Ankara, 2012.
  • [18] TS EN-196-1. Çimento deney metodları-Bölüm 1: Dayanım tayini. Türk Standartları, Ankara, 2016.
  • [19] Temel R. (2017). Uçak Kara Kutusundan Alınan Veriler Kullanılarak Hücum Açısı Ve Mach Sayısının Ysa Ve Anfıs İle Tahmini. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • [20] Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, YSA, and ANFIS Techniques. Comput. Inf. Sci., 2(3), 127-136.
  • [21] Jang, J. S. (1996, September). Input selection for ANFIS learning. In Proceedings of IEEE 5th International Fuzzy Systems (Vol. 2, pp. 1493-1499). IEEE.
  • [22] Bhavani Chowdary, T., & Ranga Rao, V. (2021). Design and Analysis of Lightweight Alkali-Activated Slag and Fly Ash Geopolymer Mortars using ANFIS-SSO. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-14.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri
Yazarlar

Uğur Güvenç 0000-0002-5193-7990

Burak Koçak 0000-0002-8640-1758

Yayımlanma Tarihi 31 Ocak 2022
Gönderilme Tarihi 30 Aralık 2021
Kabul Tarihi 10 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE U. Güvenç ve B. Koçak, “Pomza ve Diatomitin Portland Çimentosunun Basınç Dayanımına Etkilerinin ANFIS ile Tahmini”, ESTUDAM Bilişim, c. 3, sy. 1, ss. 18–25, 2022, doi: 10.53608/estudambilisim.1051136.

Dergimiz Index Copernicus, ASOS Indeks, Google Scholar ve ROAD indeks tarafından indekslenmektedir.