Araştırma Makalesi
BibTex RIS Kaynak Göster

Çörekotu tohumu yağının in vitro ruminal biyohidrojenasyonun belirlenmesi

Yıl 2024, Cilt: 7 Sayı: 2, 155 - 160, 31.12.2024
https://doi.org/10.55257/ethabd.1560517

Öz

Biyohidrojenasyon rumende doymamış yağ asitlerinin mikroorganizmalar tarafından doyurulmasıdır. Rumende bu işlem sonucunda elde edilen ürünlerde doymuş yağ asitleri oranı yüksektir. Ancak doyurulma sırasında konjuge linoleik asit gibi meydana gelen ara ürünler, elde edilen ürünlerde kaliteyi artırmaktadır. Bu çalışmada amaç doymamış yağ asitleri bakımından zengin olan çörekotu yağında ruminal biyohidrojenasyonun belirlenmesidir. Çalışmada çörekotu yağı 3 farklı dozda (%1, 2 ve 3) rasyona ilave edilerek 5 tekerrürlü olarak in vitro inkübasyona bırakılmıştır. İnkübasyonda kullanılan rumen sıvısı 4 katlı bez peynir torbasından geçirildikten sonra 1:9 oranında yapay tükürük ile karıştırılarak inkübasyon sıvısı oluşturulmuştur. İnkübasyon sıvısı yemlerle karıştırılmış ve 24 saat 39 °C’lik su banyosunda bekletilmiştir. Bu inkübasyon sıvısından 0, 1.5, 3, 6, 12 ve 24. saatlerde örnekleme yapılarak yağ asidi profili ve fermantasyon parametreleri belirlenmiştir. İnkübasyonun sonunda rumen sıvısı yağ asitleri, yemdeki başlangıç yağ asitleri ve inkübasyon sonrası yağ asitleri karşılaştırılarak hangi yağ asidinin nasıl değiştiği belirlenmiştir. Burada biyohidrojenasyonun belirlenmesinde temel oluşturan yağ asitleri bireysel olarak değerlendirilmiştir. Bunlar: 18:1, 18:2 ve 18:3 yağ asitleridir. Sonuç olarak C18:1 ve C18:2 yağ asitlerinin yağ ilave edilen gruplarda lineer olarak azaldığı, C18:3 yağ asidinin ise lineer olarak artış gösterdiği belirlenmiştir. Rasyona çörekotu tohumu ilavesinin ruminal fermantasyon parametrelerini etkilemediği belirlenmiştir.

Proje Numarası

ERÜ Bap FHD-2021-11065

Teşekkür

Bu çalışma, Erciyes Üniversitesi Bilimsel Araştırma Proje Birimi tarafından finansal olarak desteklenmiştir. Desteklerinden dolayı Erciyes Üniversitesi’ne teşekkür ederim (Proje no: FHD-2021-11065).

Kaynakça

  • Bayat, A. R., Tapio, I., Vilkki, J., Shingfield, K. J., Leskinen, H. 2018. “Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield” Journal of Dairy Science, 101, 1136-1151.
  • Bernard, L., Bonnet, M., Leroux, C., Shingfield, K. J., & Chilliard, Y. (2009). Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in alpine goats fed maize silage–based diets. Journal of Dairy Science, 92(12), 6083-6094.
  • Buccioni, A., Pauselli, M., Viti, C., Minieri, S., Pallara, G., Roscini, V., Mele, M. 2015. “Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes” Journal of Dairy Science, 98, 1145-1156.
  • Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J., Doreau, M. 2007. “Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat” Eurep. J. Lip. Sci.Technol. 109, 828-855.
  • Cozma, A., Andrei, S., Pintea, A., Miere, D., Filip, L., Loghin, F., Ferlay, A. 2015. “Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentration in Carpathian goats” Czech Journal of Animal Science, 60, 289-301.
  • Donovan, D. C., Schingoethe, D. J., Baer, R. J., Ryali, J., Hippen, A. R., Franklin, S. T. 2000. “Influence of dietary fish oil on conjugated linoleic acid and other fatty acids in milk fat from lactating dairy cows” Journal of Dairy Science, 83, 2620-2628.
  • Erwin, E. S., Marco, G. J., Emery, E. M. 1961. “Volatile fatty acid analyses of blood and rumen fluid by gas chromatography” Journal of Dairy Science, 44, 1768-1771.
  • Folch, J., Lees, M., Sloane-Stanley, G.H. 1957. “A simple method for the isolation and purification of total lipids from animal tissues” Journal of Biological Chemistry, 226, 497-509.
  • Fritsche, J., Steinhart, H. 1998. “Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake” Zeitschrift für Lebensmitteluntersuchung und Forschung A, 206, 77-82.
  • Gómez-Cortés, P., Cívico, A., de la Fuente, M. A., Sánchez, N. N., Blanco, F. P. Marín, A. L. M. 2019. “Short term evolution of nutritionally relevant milk fatty acids of goats fed a cereal-based concentrate enriched with linseed oil” Innovative Food Science Emerging Technology, 51, 107-113.
  • Gonthier, C., Mustafa, A. F., Berthiaume, R., Petit, H. V., Martineau, R., & Ouellet, D. R. (2004). Effects of feeding micronized and extruded flaxseed on ruminal fermentation and nutrient utilization by dairy cows. Journal of dairy science, 87(6), 1854-1863.
  • Huyen, N. T., Verstegen, M. W., Hendriks, W. H., & Pellikaan, W. F. (2020). Sainfoin (Onobrychis viciifolia) silage in dairy cow rations reduces ruminal biohydrogenation and increases transfer efficiencies of unsaturated fatty acids from feed to milk. Animal Nutrition, 6(3), 333-341.
  • Kholif, A. E., Gouda, G. A., Olafadehan, O. A., & Abdo, M. M. (2018). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12(5), 964-972.
  • Kliem, K. E., Humphries, D. J., Grandison, A. S., Morgan, R., Livingstone, K. M., Givens, D. I., Reynolds, C. K. 2019. “Effect of a whey protein and rapeseed oil gel feed supplement on milk fatty acid composition of Holstein cows” Journal of Dairy Science, 102, 288-300.
  • Pirondini, M., Colombini, S., Mele, M., Malagutti, L., Rapetti, L., Galassi, G., Crovetto, G.M. 2015. “Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows” Journal of Dairy Science, 98, 357-372.
  • Sinclair, L. A., S. L. Cooper, J. A. Huntington, R. G. Wilkinson, K. G. Hallett, M. Enser, J. D. Wood. 2005. “In vitro biohydrogenation of n-3 polyunsaturated fatty acids protected against ruminal microbial metabolism” Animal Feed Science and Technology, 123-124, 579-596.
  • Soder, K. J., Brito, A. F., & Rubano, M. D. (2013). Effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture. Journal of dairy science, 96(4), 2551-2556.
  • Sterk, A., Van Vuuren, A. M., Hendriks, W. H., & Dijkstra, J. (2012). Effects of different fat sources, technological forms and characteristics of the basal diet on milk fatty acid profile in lactating dairy cows–a meta-analysis. The Journal of Agricultural Science, 150(4), 495-517.
  • Toral, P. G., Belenguer, A., Shingfield, K. J., Hervás, G., Toivonen, V., & Frutos, P. (2012). Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. Journal of Dairy Science, 95(2), 794-806.
  • Zhang, C. M., Guo, Y. Q., Yuan, Z. P., Wu, Y. M., Wang, J. K., Liu, J. X., & Zhu, W. Y. (2008). Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology, 146(3-4), 259-269.

Determination of in vitro ruminal biohydrogenation of black cumin seed oil

Yıl 2024, Cilt: 7 Sayı: 2, 155 - 160, 31.12.2024
https://doi.org/10.55257/ethabd.1560517

Öz

Biohydrogenation is the saturation of unsaturated fatty acids in the rumen by microorganisms. The ratio of saturated fatty acids is high in the products obtained because of this biohydrogenation process in the rumen. However, intermediate products such as conjugated linoleic acid during saturation increase the quality of the products obtained. The aim of this study is to determine ruminal biohydrogenation in black cumin oil, which is rich in unsaturated fatty acids. In the study, black cumin oil was added to the diet in 3 different doses (1, 2, and 3%) for in vitro incubation with 5 replications. After passing the rumen fluid used in incubation through a 4-layer cloth cheese bag, incubation fluid was created by mixing it with artificial saliva at a ratio of 1:9. The incubation liquid was mixed with the feeds and kept in a 39 °C water bath for 24 hours. Fatty acid profile and fermentation parameters were determined by sampling from this incubation liquid at 0, 1.5, 3, 6, 12, and 24 hours. At the end of the incubation, fatty acids of the rumen fluid, starting fatty acids in the feed, and post-incubation fatty acids were compared, and it was determined which fatty acid changed. Here, the fatty acids that form the basis for determining biohydrogenation were evaluated individually. These are 18:1, 18:2, and 18:3 fatty acids. As a result, it was determined that C18:1 and C18:2 fatty acids decreased linearly in oil-added groups, while C18:3 fatty acids increased linearly. It was determined that the addition of black cumin seeds to the ration did not affect the ruminal fermentation parameters.

Proje Numarası

ERÜ Bap FHD-2021-11065

Kaynakça

  • Bayat, A. R., Tapio, I., Vilkki, J., Shingfield, K. J., Leskinen, H. 2018. “Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield” Journal of Dairy Science, 101, 1136-1151.
  • Bernard, L., Bonnet, M., Leroux, C., Shingfield, K. J., & Chilliard, Y. (2009). Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in alpine goats fed maize silage–based diets. Journal of Dairy Science, 92(12), 6083-6094.
  • Buccioni, A., Pauselli, M., Viti, C., Minieri, S., Pallara, G., Roscini, V., Mele, M. 2015. “Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes” Journal of Dairy Science, 98, 1145-1156.
  • Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J., Doreau, M. 2007. “Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat” Eurep. J. Lip. Sci.Technol. 109, 828-855.
  • Cozma, A., Andrei, S., Pintea, A., Miere, D., Filip, L., Loghin, F., Ferlay, A. 2015. “Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentration in Carpathian goats” Czech Journal of Animal Science, 60, 289-301.
  • Donovan, D. C., Schingoethe, D. J., Baer, R. J., Ryali, J., Hippen, A. R., Franklin, S. T. 2000. “Influence of dietary fish oil on conjugated linoleic acid and other fatty acids in milk fat from lactating dairy cows” Journal of Dairy Science, 83, 2620-2628.
  • Erwin, E. S., Marco, G. J., Emery, E. M. 1961. “Volatile fatty acid analyses of blood and rumen fluid by gas chromatography” Journal of Dairy Science, 44, 1768-1771.
  • Folch, J., Lees, M., Sloane-Stanley, G.H. 1957. “A simple method for the isolation and purification of total lipids from animal tissues” Journal of Biological Chemistry, 226, 497-509.
  • Fritsche, J., Steinhart, H. 1998. “Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake” Zeitschrift für Lebensmitteluntersuchung und Forschung A, 206, 77-82.
  • Gómez-Cortés, P., Cívico, A., de la Fuente, M. A., Sánchez, N. N., Blanco, F. P. Marín, A. L. M. 2019. “Short term evolution of nutritionally relevant milk fatty acids of goats fed a cereal-based concentrate enriched with linseed oil” Innovative Food Science Emerging Technology, 51, 107-113.
  • Gonthier, C., Mustafa, A. F., Berthiaume, R., Petit, H. V., Martineau, R., & Ouellet, D. R. (2004). Effects of feeding micronized and extruded flaxseed on ruminal fermentation and nutrient utilization by dairy cows. Journal of dairy science, 87(6), 1854-1863.
  • Huyen, N. T., Verstegen, M. W., Hendriks, W. H., & Pellikaan, W. F. (2020). Sainfoin (Onobrychis viciifolia) silage in dairy cow rations reduces ruminal biohydrogenation and increases transfer efficiencies of unsaturated fatty acids from feed to milk. Animal Nutrition, 6(3), 333-341.
  • Kholif, A. E., Gouda, G. A., Olafadehan, O. A., & Abdo, M. M. (2018). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12(5), 964-972.
  • Kliem, K. E., Humphries, D. J., Grandison, A. S., Morgan, R., Livingstone, K. M., Givens, D. I., Reynolds, C. K. 2019. “Effect of a whey protein and rapeseed oil gel feed supplement on milk fatty acid composition of Holstein cows” Journal of Dairy Science, 102, 288-300.
  • Pirondini, M., Colombini, S., Mele, M., Malagutti, L., Rapetti, L., Galassi, G., Crovetto, G.M. 2015. “Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows” Journal of Dairy Science, 98, 357-372.
  • Sinclair, L. A., S. L. Cooper, J. A. Huntington, R. G. Wilkinson, K. G. Hallett, M. Enser, J. D. Wood. 2005. “In vitro biohydrogenation of n-3 polyunsaturated fatty acids protected against ruminal microbial metabolism” Animal Feed Science and Technology, 123-124, 579-596.
  • Soder, K. J., Brito, A. F., & Rubano, M. D. (2013). Effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture. Journal of dairy science, 96(4), 2551-2556.
  • Sterk, A., Van Vuuren, A. M., Hendriks, W. H., & Dijkstra, J. (2012). Effects of different fat sources, technological forms and characteristics of the basal diet on milk fatty acid profile in lactating dairy cows–a meta-analysis. The Journal of Agricultural Science, 150(4), 495-517.
  • Toral, P. G., Belenguer, A., Shingfield, K. J., Hervás, G., Toivonen, V., & Frutos, P. (2012). Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. Journal of Dairy Science, 95(2), 794-806.
  • Zhang, C. M., Guo, Y. Q., Yuan, Z. P., Wu, Y. M., Wang, J. K., Liu, J. X., & Zhu, W. Y. (2008). Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology, 146(3-4), 259-269.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Makaleler
Yazarlar

Selma Büyükkılıç Beyzi 0000-0002-4622-0645

Proje Numarası ERÜ Bap FHD-2021-11065
Erken Görünüm Tarihi 19 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 4 Ekim 2024
Kabul Tarihi 14 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Büyükkılıç Beyzi, S. (2024). Çörekotu tohumu yağının in vitro ruminal biyohidrojenasyonun belirlenmesi. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 7(2), 155-160. https://doi.org/10.55257/ethabd.1560517