Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF SPATIAL ABILITY ON RECALL PERFORMANCE IN IMMERSIVE VR AND DESKTOP VIRTUAL REALITY ENVIRONMENTS

Yıl 2024, , 153 - 175, 24.01.2024
https://doi.org/10.17943/etku.1355262

Öz

Kaynakça

  • Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning & Memory, 16(4), 248-266. https://doi.org/10.1101/lm.918309
  • Blasko, D. G., Holliday-Darr, K., Mace, D., & Blasko-Drabik, H. (2004). VIZ: The visualization assessment and training Web site. Behavior Research Methods, Instruments, & Computers, 36(2), 256-260. https://doi.org/10.3758/bf03195571
  • Bors, D. A., & Vigneau, F. (2011). Sex differences on the mental rotation test: An analysis of item types. Learning and Individual Differences, 21(1), 129-132. https://doi.org/10.1016/j.lindif.2010.09.014
  • Brown, L. N., Lahar, C. J., & Mosley, J. L. (1998). Age and gender-related differences in strategy use for route information: A" map-present" direction-giving paradigm. Environment and Behavior, 30(2), 123-143.
  • Burigat, S., & Chittaro, L. (2007). Navigation in 3D virtual environments: Effects of user experience and location-pointing navigation aids. International Journal of Human-Computer Studies, 65(11), 945-958. https://doi.org/10.1016/j.ijhcs.2007.07.003
  • Buttussi, F., & Chittaro, L. (2017). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063-1076. https://doi.org/10.1109/TVCG.2017.2653117
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2011). Bilimsel Araştırma Yöntemleri. Ankara: Pegem Akademi.
  • Capitani, E., Laiacona, M., Ciceri, E., & Gruppo Italiano per lo Studio Neuropsicologico dell'Invecchiamento. (1991). Sex differences in spatial memory: A reanalysis of block tapping long-term memory according to the short-term memory level. The Italian Journal of Neurological Sciences, 12, 461-466.
  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.
  • Chen, C. J., Toh, S. C., & Fauzy, W. M. (2004). The theoretical framework for designing desktop virtual reality-based learning environments. Journal of Interactive Learning Research, 15(2), 147-167.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2d ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
  • Costello, P. J. (1997). Health and safety issues associated with virtual reality: a review of current literature. Advisory Group on Computer Graphics.
  • Dalgarno, B., Hedberg, J., & Harper, B. (2002). The contribution of 3D environments to conceptual understanding. In Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education (pp. 1-10). UNITEC Institute of Technology.
  • Driscoll, Ira, Derek A. Hamilton, Ronald A. Yeo, William M. Brooks, and Robert J. Sutherland. "Virtual navigation in humans: the impact of age, sex, and hormones on place learning." Hormones and Behavior 47, no. 3 (2005): 326-335. https://doi.org/10.1016/j.yhbeh.2004.11.013
  • Eliot J. & Smith I. M. (1983). An international directory of spatial tests. NFER-Nelson.
  • Farrell Pagulayan, K., Busch, R. M., Medina, K. L., Bartok, J. A., & Krikorian, R. (2006). Developmental normative data for the Corsi Block-tapping task. Journal of Clinical and Experimental Neuropsychology, 28(6), 1043-1052. https://doi.org/10.1080/13803390500350977
  • Garg, A. X., Norman, G., & Sperotable, L. (2001). How medical students learn spatial anatomy. The Lancet, 357(9253), 363-364. https://doi.org/10.1016/S0140-6736(00)03649-7
  • Gazit, E., Yair, Y., & Chen, D. (2006). The gain and pain in taking the pilot seat: learning dynamics in a non immersive virtual solar system. Virtual Reality, 10(3), 271-282.
  • Halpern, D. F. (2013). Sex differences in cognitive abilities. Psychology press.
  • Harshman, R. A., Hampson, E., & Berenbaum, S. A. (1983). Individual differences in cognitive abilities and brain organization: I. Sex and handedness differences in ability. Canadian Journal of Psychology
  • Hauptman, H., & Cohen, A. (2011). The synergetic effect of learning styles on the interaction between virtual environments and the enhancement of spatial thinking. Computers & Education, 57(3), 2106-2117. https://doi.org/10.1016/j.compedu.2011.05.008
  • Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22, 411-430. https://doi.org/10.3758/bf03200867
  • Hegarty, M., & Waller, D. (2005). Individual Differences in Spatial Abilities. In P. Shah & A. Miyake (Eds.), The Cambridge Handbook of Visuospatial Thinking (Cambridge Handbooks in Psychology, pp. 121-169). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.005
  • Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations–Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27(1), 209-216. https://doi.org/10.1016/j.chb.2010.07.042
  • Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. https://doi.org/10.1111/j.1365-2729.2006.00180.x
  • Keehner, M., Hegarty, M., Cohen, C., Khooshabeh, P., & Montello, D. R. (2008). Spatial reasoning with external visualizations: What matters is what you see, not whether you interact. Cognitive Science, 32(7), 1099-1132.
  • Keehner, M., Montello, D. R., Hegarty, M., & Cohen, C. (2004). Effects of interactivity and spatial ability on the comprehension of spatial relations in a 3D computer visualization. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 26, No. 26.
  • Krokos, E., Plaisant, C. & Varshney, A. Virtual memory palaces: immersion aids recall. Virtual Reality 23, 1–15 (2019). https://doi.org/10.1007/s10055-018-0346-3
  • Lee, E. A.-L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
  • Lee, E. A.-L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442. https://doi.org/10.1016/j.compedu.2014.07.010
  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174-187. https://doi.org/10.1016/j.compedu.2016.01.001
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. Child Development, 56(6), 1479–1498. https://doi.org/10.2307/1130467
  • Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature (Vol. 8, p. 226). Stanford, CA: School of Education, Stanford University.
  • Luursema, J.M., Verwey, W. B., Kommers, P. A., Geelkerken, R. H., & Vos, H. J. (2006). Optimizing conditions for computer-assisted anatomical learning. Interacting with Computers, 18(5), 1123-1138.
  • Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719. https://doi.org/10.1037/edu0000473
  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236. https://doi.org/10.1016/j.learninstruc.2017.12.007
  • Makransky, G., Borre‐Gude, S., & Mayer, R. E. (2019). Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. Journal of Computer Assisted Learning, 35(6), 691-707. https://doi.org/10.1111/jcal.12375
  • Mayer, R. E., & Sims
  • , V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389.
  • Mazman, S. G., & Altun, A. (2013). Individual differences in spatial orientation performances: an eye tracking study. World Journal on Educational Technology, 5(2), 266-280.
  • Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two-vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529-539. https://doi.org/10.1016/j.intell.2010.06.001.
  • Nguyen, N., Nelson, A. J., & Wilson, T. D. (2012). Computer visualizations: Factors that influence spatial anatomy comprehension. Anatomical Sciences Education, 5(2), 98-108. https://doi.org/10.1002/ase.1258
  • Orsini, A., Schiappa, O., Chiacchio, L., & Grossi, D. (1982). Sex differences in a children's spatial serial-learning task. The Journal of Psychology, 111(1), 67-71.
  • Parong, J., & Mayer, R. E. (2021). Learning about history in immersive virtual reality: does immersion facilitate learning?. Educational Technology Research and Development, 69(3), 1433-1451. http://dx.doi.org/10.1007/s11423-021-09999-y
  • Pfandler, M., Lazarovici, M., Stefan, P., Wucherer, P., & Weigl, M. (2017). Virtual reality-based simulators for spine surgery: a systematic review. The Spine Journal, 17(9), 1352-1363.
  • Piccardi, L., Iaria, G., Ricci, M., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Walking in the Corsi test: which type of memory do you need? Neuroscience Letters, 432(2), 127-131.
  • Sadalla, E. K., & Montello, D. R. (1989). Remembering changes in direction. Environment and Behavior, 21(3), 346-363.
  • Sanders, B., Soares, M. P., & D'Aquila, J. M. (1982). The sex difference on one test of spatial visualization: A nontrivial difference. Child Development, 53(4), 1106-1110.
  • Shu, Y., Huang, Y.-Z., Chang, S.-H., & Chen, M.-Y. (2019). Do virtual reality head-mounted displays make a difference? A comparison of presence and self-efficacy between head-mounted displays and desktop computer-facilitated virtual environments. Virtual Reality, 23, 437-446.
  • Strangman, N., Hall, T., & Meyer, A. (2003). Virtual reality and computer simulations and the implications for UDL implementation: Curriculum Enhancements Report. National Center on Accessing the General Curriculum. https://sde.ok.gov/sites/ok.gov.sde/files/VirtualRealityUDL_000.pdf adresinden 10 Ocak 2023 tarihinde ulaşılmıştır.
  • Taylor, H. A., & Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31(2), 261-292.
  • Uz, C., & Altun, A. (2014). Object location memory and sex difference: implications on static vs. dynamic navigation environments. Journal of Cognitive Science, 15(1), 27-56.
  • Vogt, W. P. (2005). Dictionary of statistics and methodology: A non-technical guide for the social sciences (3rd ed.). Thousand Oaks,CA: Sage.

SARMALAYICI VE MASAÜSTÜ SANAL GERÇEKLİK ORTAMLARINDA UZAMSAL YETENEĞİN GERİ GETİRME PERFORMANSINA ETKİSİ

Yıl 2024, , 153 - 175, 24.01.2024
https://doi.org/10.17943/etku.1355262

Öz

Alanyazında farklı sanal gerçeklik türlerini ele alan öğrenme ortamlarının öğrenenlerin bireysel farklılıklarını pek dikkate almadığı görülmüş ve farklı uzamsal yeteneklere sahip öğrenenler üzerindeki etkileri hala tam olarak anlaşılamamıştır. Ek olarak sarmalayıcı ve sarmalayıcı olmayan sanal gerçeklik öğrenme ortamlarını karşılaştıran mevcut araştırmalarda tutarsız sonuçlar görülmüştür. Bu bağlamda bu çalışmanın amacı, sarmalayıcı (immersive) ve sarmalayıcı olmayan (non-immersive) sanal gerçeklik öğrenme ortamlarında öğrencilerin uzamsal yetenek kapasitelerinin geri getirme performansları üzerindeki etkilerini incelemektir. Sarmalayıcı sanal gerçeklik (SSG) ortamında joystick ile kontrol edilen başa takılan sanal gerçeklik gözlükleri kullanılmıştır. Sarmalayıcı olmayan gezinme ortamı için ise fare veya klavye ile kontrol edilen masaüstü sanal gerçeklik kullanılmıştır. Bu çalışmaya daha önce hiç anatomi eğitimi almamış 111 gönüllü lisans öğrencisi katılmıştır. Bu öğrencilerden 53 Öğrenci SSG ortamına, 58 öğrenci masaüstü SG ortamında çalışmaya katılmıştır. Araştırma modeli 2x2 (düşük-yüksek uzamsal yetenek x SSG-Masaüstü SG) faktöriyel tasarımdır. Veri toplama aracı olarak görsel uzamsal bellek sayı döndürme testi, geri getirme performans görevi ve demografik bilgi anketi kullanılmıştır. Öğrenciler uzamsal bellek testi puanlarına göre düşük ve yüksek gruplara ayrılmış ve ardından SSG ve Masaüstü SG gruplarına rastgele atanmışlardır. Bu ortamlarda anatomi eğitimi aldıktan sonra, tüm öğrencilerden geri getirme performans görevini tamamlamaları istenmiştir. Sonuçlar, farklı uzamsal yetenek kapasitesine sahip öğrencilerin farklı SG ortamlarında geri getirme performansları üzerinde herhangi bir etkisi olmadığını göstermiştir. Ancak yüksek uzamsal yeteneğe sahip öğrencilerin eğitim uygulamasını daha kısa sürede tamamladığı görülmüştür. Cinsiyet farklılıkları da masaüstü SG ve SSG ortamlarında anlamlı bir farklılık göstermemiştir. Bu çalışmanın en önemli sonucu, öğrencilere farklı sanal gerçeklik ortamlarında aynı eşdeğer içeriğe sahip ortamlar sunulursa, aynı öğrenme çıktılarının elde edebileceğidir. Dolayısıyla bir öğrenme ortamı olarak sanal gerçeklik teknolojilerini kullanırken bir ekranda veya başa takılan bir gözlük ile sunulmasından çok sunulan içerik, görsel materyal önemli olduğu görülmüştür. Bu çalışmanın sonuçlarının, hem alanyazındaki tutarsızlıkları açıklaması hem de öğrenme ortamındaki bireysel farklılıkları dikkate alması açısından, eğitim teknolojileri alanındaki mevcut eğitim araştırmalarına ve uygulamalarına katkıda bulunması beklenmektedir.

Kaynakça

  • Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning & Memory, 16(4), 248-266. https://doi.org/10.1101/lm.918309
  • Blasko, D. G., Holliday-Darr, K., Mace, D., & Blasko-Drabik, H. (2004). VIZ: The visualization assessment and training Web site. Behavior Research Methods, Instruments, & Computers, 36(2), 256-260. https://doi.org/10.3758/bf03195571
  • Bors, D. A., & Vigneau, F. (2011). Sex differences on the mental rotation test: An analysis of item types. Learning and Individual Differences, 21(1), 129-132. https://doi.org/10.1016/j.lindif.2010.09.014
  • Brown, L. N., Lahar, C. J., & Mosley, J. L. (1998). Age and gender-related differences in strategy use for route information: A" map-present" direction-giving paradigm. Environment and Behavior, 30(2), 123-143.
  • Burigat, S., & Chittaro, L. (2007). Navigation in 3D virtual environments: Effects of user experience and location-pointing navigation aids. International Journal of Human-Computer Studies, 65(11), 945-958. https://doi.org/10.1016/j.ijhcs.2007.07.003
  • Buttussi, F., & Chittaro, L. (2017). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063-1076. https://doi.org/10.1109/TVCG.2017.2653117
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2011). Bilimsel Araştırma Yöntemleri. Ankara: Pegem Akademi.
  • Capitani, E., Laiacona, M., Ciceri, E., & Gruppo Italiano per lo Studio Neuropsicologico dell'Invecchiamento. (1991). Sex differences in spatial memory: A reanalysis of block tapping long-term memory according to the short-term memory level. The Italian Journal of Neurological Sciences, 12, 461-466.
  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.
  • Chen, C. J., Toh, S. C., & Fauzy, W. M. (2004). The theoretical framework for designing desktop virtual reality-based learning environments. Journal of Interactive Learning Research, 15(2), 147-167.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2d ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
  • Costello, P. J. (1997). Health and safety issues associated with virtual reality: a review of current literature. Advisory Group on Computer Graphics.
  • Dalgarno, B., Hedberg, J., & Harper, B. (2002). The contribution of 3D environments to conceptual understanding. In Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education (pp. 1-10). UNITEC Institute of Technology.
  • Driscoll, Ira, Derek A. Hamilton, Ronald A. Yeo, William M. Brooks, and Robert J. Sutherland. "Virtual navigation in humans: the impact of age, sex, and hormones on place learning." Hormones and Behavior 47, no. 3 (2005): 326-335. https://doi.org/10.1016/j.yhbeh.2004.11.013
  • Eliot J. & Smith I. M. (1983). An international directory of spatial tests. NFER-Nelson.
  • Farrell Pagulayan, K., Busch, R. M., Medina, K. L., Bartok, J. A., & Krikorian, R. (2006). Developmental normative data for the Corsi Block-tapping task. Journal of Clinical and Experimental Neuropsychology, 28(6), 1043-1052. https://doi.org/10.1080/13803390500350977
  • Garg, A. X., Norman, G., & Sperotable, L. (2001). How medical students learn spatial anatomy. The Lancet, 357(9253), 363-364. https://doi.org/10.1016/S0140-6736(00)03649-7
  • Gazit, E., Yair, Y., & Chen, D. (2006). The gain and pain in taking the pilot seat: learning dynamics in a non immersive virtual solar system. Virtual Reality, 10(3), 271-282.
  • Halpern, D. F. (2013). Sex differences in cognitive abilities. Psychology press.
  • Harshman, R. A., Hampson, E., & Berenbaum, S. A. (1983). Individual differences in cognitive abilities and brain organization: I. Sex and handedness differences in ability. Canadian Journal of Psychology
  • Hauptman, H., & Cohen, A. (2011). The synergetic effect of learning styles on the interaction between virtual environments and the enhancement of spatial thinking. Computers & Education, 57(3), 2106-2117. https://doi.org/10.1016/j.compedu.2011.05.008
  • Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22, 411-430. https://doi.org/10.3758/bf03200867
  • Hegarty, M., & Waller, D. (2005). Individual Differences in Spatial Abilities. In P. Shah & A. Miyake (Eds.), The Cambridge Handbook of Visuospatial Thinking (Cambridge Handbooks in Psychology, pp. 121-169). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.005
  • Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations–Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27(1), 209-216. https://doi.org/10.1016/j.chb.2010.07.042
  • Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. https://doi.org/10.1111/j.1365-2729.2006.00180.x
  • Keehner, M., Hegarty, M., Cohen, C., Khooshabeh, P., & Montello, D. R. (2008). Spatial reasoning with external visualizations: What matters is what you see, not whether you interact. Cognitive Science, 32(7), 1099-1132.
  • Keehner, M., Montello, D. R., Hegarty, M., & Cohen, C. (2004). Effects of interactivity and spatial ability on the comprehension of spatial relations in a 3D computer visualization. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 26, No. 26.
  • Krokos, E., Plaisant, C. & Varshney, A. Virtual memory palaces: immersion aids recall. Virtual Reality 23, 1–15 (2019). https://doi.org/10.1007/s10055-018-0346-3
  • Lee, E. A.-L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
  • Lee, E. A.-L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442. https://doi.org/10.1016/j.compedu.2014.07.010
  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174-187. https://doi.org/10.1016/j.compedu.2016.01.001
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. Child Development, 56(6), 1479–1498. https://doi.org/10.2307/1130467
  • Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature (Vol. 8, p. 226). Stanford, CA: School of Education, Stanford University.
  • Luursema, J.M., Verwey, W. B., Kommers, P. A., Geelkerken, R. H., & Vos, H. J. (2006). Optimizing conditions for computer-assisted anatomical learning. Interacting with Computers, 18(5), 1123-1138.
  • Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719. https://doi.org/10.1037/edu0000473
  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236. https://doi.org/10.1016/j.learninstruc.2017.12.007
  • Makransky, G., Borre‐Gude, S., & Mayer, R. E. (2019). Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. Journal of Computer Assisted Learning, 35(6), 691-707. https://doi.org/10.1111/jcal.12375
  • Mayer, R. E., & Sims
  • , V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389.
  • Mazman, S. G., & Altun, A. (2013). Individual differences in spatial orientation performances: an eye tracking study. World Journal on Educational Technology, 5(2), 266-280.
  • Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two-vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529-539. https://doi.org/10.1016/j.intell.2010.06.001.
  • Nguyen, N., Nelson, A. J., & Wilson, T. D. (2012). Computer visualizations: Factors that influence spatial anatomy comprehension. Anatomical Sciences Education, 5(2), 98-108. https://doi.org/10.1002/ase.1258
  • Orsini, A., Schiappa, O., Chiacchio, L., & Grossi, D. (1982). Sex differences in a children's spatial serial-learning task. The Journal of Psychology, 111(1), 67-71.
  • Parong, J., & Mayer, R. E. (2021). Learning about history in immersive virtual reality: does immersion facilitate learning?. Educational Technology Research and Development, 69(3), 1433-1451. http://dx.doi.org/10.1007/s11423-021-09999-y
  • Pfandler, M., Lazarovici, M., Stefan, P., Wucherer, P., & Weigl, M. (2017). Virtual reality-based simulators for spine surgery: a systematic review. The Spine Journal, 17(9), 1352-1363.
  • Piccardi, L., Iaria, G., Ricci, M., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Walking in the Corsi test: which type of memory do you need? Neuroscience Letters, 432(2), 127-131.
  • Sadalla, E. K., & Montello, D. R. (1989). Remembering changes in direction. Environment and Behavior, 21(3), 346-363.
  • Sanders, B., Soares, M. P., & D'Aquila, J. M. (1982). The sex difference on one test of spatial visualization: A nontrivial difference. Child Development, 53(4), 1106-1110.
  • Shu, Y., Huang, Y.-Z., Chang, S.-H., & Chen, M.-Y. (2019). Do virtual reality head-mounted displays make a difference? A comparison of presence and self-efficacy between head-mounted displays and desktop computer-facilitated virtual environments. Virtual Reality, 23, 437-446.
  • Strangman, N., Hall, T., & Meyer, A. (2003). Virtual reality and computer simulations and the implications for UDL implementation: Curriculum Enhancements Report. National Center on Accessing the General Curriculum. https://sde.ok.gov/sites/ok.gov.sde/files/VirtualRealityUDL_000.pdf adresinden 10 Ocak 2023 tarihinde ulaşılmıştır.
  • Taylor, H. A., & Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31(2), 261-292.
  • Uz, C., & Altun, A. (2014). Object location memory and sex difference: implications on static vs. dynamic navigation environments. Journal of Cognitive Science, 15(1), 27-56.
  • Vogt, W. P. (2005). Dictionary of statistics and methodology: A non-technical guide for the social sciences (3rd ed.). Thousand Oaks,CA: Sage.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eğitim Üzerine Çalışmalar (Diğer)
Bölüm Makaleler
Yazarlar

Perihan Tekeli 0000-0001-7831-9693

Arif Altun 0000-0003-4060-6157

Deniz Demiryürek 0000-0001-8781-1719

Alper Vatansever 0000-0002-3632-1020

Erken Görünüm Tarihi 16 Ocak 2024
Yayımlanma Tarihi 24 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tekeli, P., Altun, A., Demiryürek, D., Vatansever, A. (2024). SARMALAYICI VE MASAÜSTÜ SANAL GERÇEKLİK ORTAMLARINDA UZAMSAL YETENEĞİN GERİ GETİRME PERFORMANSINA ETKİSİ. Eğitim Teknolojisi Kuram Ve Uygulama, 14(1), 153-175. https://doi.org/10.17943/etku.1355262