Araştırma Makalesi
BibTex RIS Kaynak Göster

3D TASARIM ÖĞRENME DENEYİMİNİN SÜREÇ DEĞERLENDİRMESİ VE EĞİTSEL ÇIKTILARININ KEŞFEDİLMESİ

Yıl 2019, , 21 - 49, 31.01.2019
https://doi.org/10.17943/etku.419386

Öz

Bilgi ve iletişim teknolojilerinde yaşanan hızlı dönüşümler
ve sanayi devrimiyle gelen yeni sanayi çağı, eklemeli imalatla birlikte ön
plana çıkan 3 boyutlu yazıcıların önemini ortaya çıkarmıştır. Bu çalışma,
“Çocuklar için 3D Tasarım” eğitiminin öğrenciler açısından etkilerinin
derinlemesine incelenmesini amaçlamaktadır. 42 erkek, 37 kız olmak üzere toplam
79 öğrenci 12 hafta boyunca 3D tasarım etkinliklerine katılmıştır. Çalışmanın
başında, bilgi formu ile çocukların demografik bilgileri ve bilişim teknolojileri
kullanım durumları hakkında bilgiler alınmıştır. 12 hafta süren eğitim
içerisinde, öğrencilerin ortaya koydukları 120 ürünün değerlendirilmesi ile
gelişimleri incelenmiştir. Ayrıca, eğitimden sonra öğrencilerle probleme dayalı
soruların yer aldığı bir görüşme yapılarak, öğrencilerin gördükleri bir nesneyi
parça bütün ilişkisi kurarak analiz edebilme düzeyleri incelenmiştir. Ayrıca,
öğrenci ve veliler ile yapılan görüşmelerle, öğrencilerin kazandıkları
becerileri gerçek hayatla ve dersleri ile ilişkilendirme durumları
incelenmiştir. Çalışmanın son ayağında, öğrencilerin eğitim ortamını nasıl
değerlendirdiğini keşfetmek üzere görüşmeler yapılmıştır. Bilgi formundan elde
edilen veriler frekans, yüzde gibi betimsel analizlerle yorumlanırken
görüşmelerden elde edilen nitel veriler de içerik analizi yöntemiyle analiz
edilmiştir. Çalışma sonucunda, öğrencilerin eğitimlerden sonra parça bütün
ilişkisi kurma ve tasarım becerileri açısından gelişme kaydettiği
görülmektedir. Ayrıca, öğrenciler eğitim içerisinde kazandıkları becerilerinin
mimarlık, tıp, inşaat gibi mesleklerdeki uygulama alanlarına değinmişlerdir.
Öğrenciler elde ettikleri becerilerin güzel sanatlar, geometri ve fizik
dersleri için de önemli olduğu belirtmiştir. Öğrencilerin eğitim ortamı değerlendirirken,
kulanım kolaylığı, eğitimin içerikleri ve eğitimin etkisi temaları üzerinde
görüş̧ bildirdikleri görülmüştür. Öğrenciler, eğitim materyallerini ve
araçlarını kullanmanın bir zorluk ve motivasyon kaybı yaratmadığı ve
etkinliklerin 3D tasarım yapabilmenin kolay, zevkli ve gerçekçi/anlamlı
olduğunu göstermesi açısından faydalı olduğu görüşlerini bildirmişlerdir.

Kaynakça

  • Alias, M., Black, T. R., ve Gray, D. E. (2002). Effect of instruction on spatial visualization ability in civil engineering students. International Education Journal, 3(1).
  • Aydın, F., ve Karaçam, S. (2015). Gruplar için teknolojik tasarım uygulamalarını değerlendirmeye yönelik bir analitik rubrik çalışması. Mersin University Journal of the Faculty of Education, 11(1).
  • Berg, B. L. (2009). Qualitative research methods for the social sciences(7th ed). Boston, MA: Pearson Ally& Bacon.
  • Berger, R. (2014). Industry 4.0: The new industrial revolution–How Europe will succeed. Roland Berger strategy consultants.
  • Bevan, B., Gutwill, J. P., Petrich, M., ve Wilkinson, K. (2015). Learning through STEM‐rich tinkering: Findings from a jointly negotiated research project taken up in practice. Science Education, 99(1), 98-120.
  • Buehler, E., Grimes, S., Grimes, S., ve Hurst, A. (2015). Investigating 3d printing education with youth designers and adult educators. FabLearn 2015.
  • Burton, L. J., ve Dowling, D. G. (2009). Key factors that influence engineering students' academic success: A longitudinal study. In Proceedings of the Research in Engineering Education Symposium (REES 2009) (pp. 1-6). University of Melbourne.
  • Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., ve Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26, 269–309.
  • Casey, B. M., ve Bobb, B. (2003). The power of block building. Teaching Children Mathematics, 10, 98–102.
  • Chang, Y. S., Chien, Y. H., Lin, H. C., Chen, M. Y., ve Hsieh, H. H. (2016). Effects of 3D CAD applications on the design creativity of students with different representational abilities. Computers in Human Behavior, 65, 107-113.
  • Chen, L. (2004). Architectural visualization: An analysis from human visual cognition process. Program in Digital Arts & Design Faculty of Art & Design. Monash University, Australia.
  • Chu, S. L., Angello, G., Saenz, M., ve Quek, F. (2017). Fun in Making: Understanding the experience of fun and learning through curriculum-based Making in the elementary school classroom. Entertainment Computing, 18, 31-40.
  • Christou, C., Jones, K., Pitta-Pantazi, D., Pittalis, M., Mousoulides, N., Matos, J.F., Sendova, E., Zachariades, T. ve Boytchev, P. (2007) Developing student spatial ability with 3D software applications. At 5th Congress of the European Society for Research in Mathematics Education (CERME5) (ss. 10).
  • Contero, M., Naya, F., Company, P., Saorin, J. L., ve Conesa, J. (2005). Improving visualization skills in engineering education. IEEE Computer Graphics and Applications, 25(5), 24-31.
  • Cölln, M. C., Kusch, K., Helmert, J. R., Kohler, P., Velichkovsky, B. M., ve Pannasch, S. (2012). Comparing two types of engineering visualizations: Task-related manipulations matter. Applied ergonomics, 43(1), 48-56.
  • Dornisch, M. M., ve McLoughlin, A. S. (2006). Limitations of web-based rubric resources: Addressing the challenges. Practical Assessment, Research & Evaluation, 11(3), 1-8.
  • Duerden, M. D., ve Witt, P. A. (2012). Assessing program implementation: What it is, why it's important, and how to do it. Journal of Extension, 50(1), 1-8.
  • Eyal, R., ve Tendick, F. (2001). Spatial ability and learning the use of an angled laparoscope in a virtual environment. In Proceedings of the annual medicine meets virtual reality conference (pp. 146–151).
  • Frey, C. B., ve Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerisation?. Technological Forecasting and Social Change, 114, 254-280.
  • Gerson, H. B., Sorby, S. A., Wysocki, A., ve Baartmans, B. J. (2001). The development and assessment of multimedia software for improving 3‐D spatial visualization skills. Computer Applications in Engineering Education, 9(2), 105-113.
  • Grissmer, D. W., Mashburn, A. J., Cottone, E., Chen, W. B., Brock, L. L., Murrah, W. M., et al. (2013, Nisan). Play-based after-school curriculum improves measures of executive function, visuospatial and math skills and classroom behavior for high risk K-1 children. Paper presented at the Society for Research in Child Development, Seattle, WA.
  • Gün, E. T., ve Atasoy, B. (2017). The effects of augmented reality on elementary school students’ spatial ability and academic achievement. Egitim ve Bilim, 42(191).IEEE (2015). IEEE Smart Cities.http://smartcities.ieee.org/about.html adresinden 15.01.2018 tarihinde erişilmiştir.
  • Jensen, J. L., ve Rodgers, R. (2001). Cumulating the intellectual gold of case study research. Public Administration Review 61(2), 236-246.
  • Kan, A. (2007). Performans değerlendirme sürecine katkıları açısından yeni program anlayışı içerisinde kullanılabilecek bir değerlendirme yaklaşımı: Rubrik Puanlama Yönergeleri. Kuram ve Uygulamada Eğitim Bilimleri, 7(1), 129-152.
  • Kaufmann, H., Schmalstieg, D., ve Wagner, M. (2000). Construct3D: a virtual reality application for mathematics and geometry education. Education and information technologies, 5(4), 263-276.
  • Kwon, H. (2017). Effects of 3d printing and design software on students’ interests, motivation, mathematical and technical skills. Journal of STEM Education: Innovations and Research, 18(4).
  • Lazarowitz, R., ve Naim, R. (2013). Learning the cell structures with three-dimensional models: students’ achievement by methods, type of school and questions’ cognitive level. Journal of Science Education and Technology, 22(4), 500-508.
  • Levine, S. C., Ratliff, K. R., Huttenlocher, J., ve Cannon, J. (2012). Early puzzle play: A predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48, 530–542.
  • Lin, H. Y., ve Lee, Y. S. (2010). The effects of spatial short-term memory, spatial working memory and spatial ability on performance in engineering graphics. Journal of Design, 15(4), 1–18.
  • Loveless, A. (2002). Literature review in creativity, new technologies and learning. Future Lab. https://telearn.archives-ouvertes.fr/hal-00190439/document adresinden 20.01.2018 tarihinde erişilmiştir.
  • Luh, D. B., ve Chen, S. N. (2013). A novel CAI system for space conceptualization training in perspective sketching. International Journal of Technology and Design Education, 23(1), 147–160.
  • Lüleburgaz Belediyesi (2015). 2012-2016 Lüleburgaz Belediyesi Stratejik Planı. http://www.luleburgaz.bel.tr/upload/stratejik-plan-2012-2016.pdf adresinden 25.05.2017 tarihinde erişilmiştir.
  • Mintz, R., Litvak, S., ve Yair, Y. (2001). 3D-virtual reality in science education: An implication for astronomy teaching. Journal of Computers in Mathematics and Science Teaching, 20(3), 293-305.
  • Lester, F. K. (Ed.). (2007). Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics. IAP.Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34, 29–35.
  • Nguyen, L., & Shanks, G. (2009). A framework for understanding creativity in requirements engineering. Information and software technology, 51(3), 655-662.
  • Norman, K. L. (1994). Spatial visualization—A gateway to computer-based technology. Journal of Special Education Technology, 12(3), 195-206.
  • Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10.
  • Özdemir, S., Çetin, E., Çelik, A., Berikan, B. ve Yüksel, A.O. (2017). Furnushing New Generations with Productive ICT Skills to Make Them the Maker of Their Own Future. Journal of Education and Future, 11(1). 137-158.
  • Pallrand, G. J., ve Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516.
  • Papavlasopoulou, S., Giannakos, M. N., ve Jaccheri, L. (2017). Empirical studies on the Maker Movement, a promising approach to learning: A literature review. Entertainment Computing, 18, 57-78.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books,Newyork.
  • Papert, S., ve Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.
  • Park, J., Kim, D. E., ve Sohn, M. (2011). 3D simulation technology as an effective instructional tool for enhancing spatial visualization skills in apparel design. International Journal of Technology and Design Education, 21(4), 505-517.
  • Parlak, B., ve Doğan, N. (2014). Dereceli puanlama anahtarı ve puanlama anahtarından elde edilen puanların uyum düzeyleri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 29(29-2).
  • Potter, C. ve Merwe, E. (2001). Spatial ability, visual imagery and academic performance in engineering graphics. In Proceedings of the international conference on engineering education. Oslo/Bergen, Norway.
  • Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. A. Gutierrez ve P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (ss. 205–236). Rotterdam: Sense.
  • Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191-212.
  • Rafi, A., Samsudin, K. A., ve Said, C. S. (2008). Training in spatial visualization: The effects of training method and gender. Educational Technology & Society, 11 (3), 127-140.
  • Resnick, M., ve Rosenbaum, E. (2013). Designing for tinkerability. M. Honey ve D. E. Kanter(Eds), Design, make, play: Growing the next generation of STEM innovators(ss. 163-181).Newyork: Routledge.
  • Rohrbach, S. (2010). Analyzing the appearance and wording of assessments: understanding their impact on students’ perception and understanding, and instructors’ processes. In conference of the Design Research Society ,(ss. 1-13).
  • Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., ve Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 9.
  • Shaughnessy, J. J., Zechmeister, E. B., ve Zechmeister, J. S. (2008). Research methods in psychology (8th ed.). New York: McGraw-Hill.
  • Smith, G. G., ve Olkun, S. (2005). Why interactivity works: Interactive priming of mental rotation. Journal of Educational Computing Research, 32(2), 93–111.
  • Smith, S., ve Tillman, D. (2015, Mart). Digital fabrication playground: hands-on experimentation with design technologies to enrich learning. In Society for Information Technology & Teacher Education International Conference (s. 133-136). Association for the Advancement of Computing in Education (AACE).
  • Sorby, S. A. ve Baartmans, B. J. (2000). The Development and Assessment of a Course for Enhancing the 3‐D Spatial Visualization Skills of First Year Engineering Students. Journal of Engineering Education, 89(3), 301-307.
  • Sorby, S. A., Drummer, T., Hungwe, K., ve Charlesworth, P. (2005). Developing 3-D spatial visualization skills for non-engineering students. In Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition (Vol. 10, pp. 1-10).
  • Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), 1-11.
  • Stiles, J., ve Stern, C. (2009). Developmental change in spatial cognitive processing: Complexity effects and block construction performance in preschool children. Journal of Cognition and Development, 2, 157–187.
  • Schrauf, S., ve Berttram, P. (2016). Industry 4.0: How digitization makes the supply chain more efficient agile and customer-focused. Strategy&, 1-32.
  • Strong, S., ve Smith, R. (2002). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18, 1–6.
  • Şenel, T., Çepni, S., Yıldırım, N., ve Er Nas, S. (2007). Süreç odaklı değerlendirmede kullanılabilecek bir analitik rubriğin geliştirilmesi: Yaşamımızdaki elektrik ünitesi örneği. Edu 7 Dergisi, 2(2).
  • Şimşek, E., & Yücekaya, G. K. (2014). Dinamik geometri yazılımı ile öğretimin ilköğretim 6. sınıf öğrencilerinin uzamsal yeteneklerine etkisi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 15(1).
  • The Economist (2013). The multiplexed metropolis. http://www.economist.com/news/briefing/21585002-enthusiasts-think-data-services-can-change-cities-century-much-electricity adresinden 15.01.2018 tarihinde erişilmiştir.
  • Tillman, D., An, S., Cohen, J. D., Kjellstrom, W., & Boren, R. (2014). Exploring Wind Power: Improving Mathematical Thinking through Digital Fabrication. Journal of Educational Multimedia and Hypermedia, 23(4), 401-421.
  • Tuckey, H., Selvaratnam, M., ve Bradley, J. (1991). Identification and rectification of student difficulties concerning three-dimensional structures, rotation, and reflection. Journal of Chemical Education, 68(6), 460.
  • TÜBİTAK (2016). Yeni Sanayi Devrimi Akıllı Üretim Sistemleri Teknoloji Yol Haritası. Ankara: TÜBİTAK Bilim, Teknoloji ve Yenilik Politikaları Daire Başkanlığı.
  • Verdine, B. N., Golinkoff, R. M., Hirsh‐Pasek, K., Newcombe, N. S., Filipowicz, A. T., ve Chang, A. (2014). Deconstructing building blocks: Preschoolers' spatial assembly performance relates to early mathematical skills. Child development, 85(3), 1062-1076.
  • Verner, I., ve Merksamer, A. (2015). Digital design and 3D printing in technology teacher education. Procedia CIRP, 36, 182-186.
  • Vossoughi, S., Escudé, M., Kong, F., ve Hooper, P. (2013, Ekim). Tinkering, learning & equity in the after-school setting. In annual FabLearn conference. Palo Alto, CA: Stanford University.
  • Wai, J., Lubinski, D., ve Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
  • Westkämper, E., ve Walter, F. (2014). Towards the re-industrialization of Europe. A Concept for Manufacturing for, 2030.
  • Willett, R. (2007) Technology, pedagogy and digital production: a case study of children learning new media skills. Learning, Media and Technology, 32(2), 167-181.
  • Wu, Q., Xu, H., ve Zou, X. (2005). An effective method for 3D geological modeling with multi-source data integration. Computers & Geosciences, 31(1), 35-43.
  • Yarema, R., Deptuch, G., Hoff, J., Shenai, A., Trimpl, M., Zimmerman, Demarteau, M., Lipton, R. ve Christian, D. (2010). 3D design activities at Fermilab-Opportunities for physics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 617(1), 375-377.
  • Yıldız, B., ve Tüzün, H. (2011). Effects of using three-dimensional virtual environments and concrete manipulatives on spatial ability. Hacettepe University Journal of Education, 41, 498-508.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Akça Okan Yüksel 0000-0002-5430-0821

Ekmel Çetin 0000-0002-1076-8887

Burcu Berikan 0000-0001-6241-9593

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Yüksel, A. O., Çetin, E., & Berikan, B. (2019). 3D TASARIM ÖĞRENME DENEYİMİNİN SÜREÇ DEĞERLENDİRMESİ VE EĞİTSEL ÇIKTILARININ KEŞFEDİLMESİ. Eğitim Teknolojisi Kuram Ve Uygulama, 9(1), 21-49. https://doi.org/10.17943/etku.419386