Amaç: Bu çalışmanın amacı dental pulpa kaynaklı
mezenkimal kök hücrelere (DP-MKH) Yeşil Floresan
Protein (GFP) genini transfer etmek ve elektroporasyon
parametrelerini optimize etmektir.
Gereç ve Yöntem: DP-MKH ler GFP geni ile Neon
Transfection System kullanılarak transfekte edildi. 5
f a r k l ı e l e k t r o p o r a s y o n p a r a m e t r e s i
( 1 2 0 0 v , 2 0 m s , 1 p u l s ; 1 2 0 0 v , 2 0 m s , 2 p u l s ;
1 3 0 0 v , 4 0 m s , 1 p u l s ; 1 4 0 0 v , 2 0 m s , 1 p u l s ;
1400v,20ms,2puls) optimizasyon için karşılaştırıldı.
Transfeksiyondan sonra hücrelerin canlılık ve apoptoz
değerleri 0, 24 ve 48. saatlerde analiz edildi. Floresan
ışık yoğunluğu floresan mikroskop altında değerlendirildi.
Bulgular: DP-MKH için CD29, CD44 pozitif ve CD45
negatif bulundu. Diğer gruplara göre daha fazla canlı
hücre sayısı, GFP geninin daha yüksek ekspresyonu ve
daha düşük apoptoz 1200v, 20ms, 1puls
elektroporasyon değerinde elde edileceği tespit edildi.
Sonuç: Tavşan hayvan modeli doku mühendisliği çalışmalarında sık kullanılan bir modeldir. Çalışmamızdan
elde edilen bu sonuçlar ileri tavşan DP-MKH için optimum elektroporasyon koşullarını göstermektedir
1. Moraleda JM, Blanquer M, Bleda P, et al. Adult stem
cell therapy: Dream or reality. Transpl Immunol
2006; 17:74–77.
2. Caplan AL, Bruder SP. Mesenchymal Stem cells:
Building blocks for molecular medicine in the 21st
century. Trends Mol Med 2001; 7:259–264.
3. Gronthos S, Mankani M, Brahim J, et al. Postnatal
human dental pulp stem cells (DPSCs) in vitro and in
vivo. Proc Natl Acad Sc 2000; 97:13625–13630.
4. Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells
from human exfoliated deciduous teeth. Proc Natl
Acad Sci 2003; 100:5807–5812.
5. Seo BM, Miura M, Gronthos S, et al. Investigation of
multipotent postnatal stem cells from human
periodontal ligament. Lancet 2004; 364:149–155.
6. Morsczeck C, Gotz W, Schierholz J, et al. Isolation of
precursor cells (PCs) from human dental follicle of
wisdom teeth. Matrix Biol 2005; 24:155–165.
7. Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem
cell-mediated functional tooth regeneration in
swine. PLoS One 2006; 79:1–8.
8. 8. Sharpe PT, Young CS. Tube-tube teeth. Sci Am
2005; 293:34–41.
9. Loomba K, Bains R, Bains VK, et al. Tissue
engineering and its application in endodontics: An
overview. ENDO (Lond Engl) 2012; 6:105–112.
10. Nakashima M. Tissue engineering in endodontics.
Aust Endod J 2005; 31:111–113.
11. Iohara K, Nakashima M, Ito M, et al. Dentin
regeneration by dental pulp stem cell therapy with
recombinant human bone morphogenic protein 2. J
Dent Res 2004; 83:590–595.
12. Karaoz E, Dogan BN, Aksoy A, et al. Isolation and in
vitro characterization of dental pulp stem cells from
natal teeth. Histochemistry and Cell Biology 2010;
133:95–112.
13. Suchánek J, Soukup T, Ivancaková R, et al. Human
dental pulp stem cells-isolation and long term
cultivation. Acta Medica (Hradec Kralove) 2007; 50:
195-201.
14. Lee UL , Jeon SH, Park JY, Choung PH. Effect of
platelet-rich plasma on dental stem cells derived
from human impacted third molars. Regen Med
2011; 6: 67-79.
15. Rizk A, Rabie BM. Electroporation for transfection
and differentiation of dental pulp stem cells.
BioResearch 2013; 2:155-162.
16. Rizk A, Rabie AB. Human dental pulp stem cells
expressing transforming growth factor β3 transgene
for cartilage-like tissue engineering. Cytotherapy
2013; 15:712-725.
17. Rane MJ, Arthur JM, Prossnitz ER, McLeish KR.
Activation of mitogen-activated protein kinases by
formyl peptide receptors is regulated by the
cytoplasmictail.JBiolChem1998; 273:20916-20923.
18. Meier J, Vannier C, Sergé A, et al. Fast and reversible
trapping of surface glycine receptors by gephyrin.
Nat Neurosci 2001; 4:253-260.
19. Cao X, Deng W, Wei Y. Incorporating ptgf-β1/calcium
phosphate nanoparticles with fibronectin into 3-
dimensional collagen/chitosan Scaffolds: Effıcient,
sustained gene delivery to stem cells for
Chondrogenic differentiation. Eur Cell Mater
2012;23:81-93.
20. Ferreira E, Potier E, Logeart-Avramoglou D, et al.
Optimization of a gene electrotransfer method for
mesenchymal stem cell transfection. Gene Ther
2008; 15:537–544.
21. Yalvac ME, Ramazanoglu M, Gumru OZ, et al.
Comparison and optimisation of transfection of
human dental follicle cells, a novel source of stem
cells, with different chemical methods and
electroporation. Neurochem Res 2009; 34: 1272-
1277.
22. Neumann E, Schaefer-Ridder M, Wang Y,
Hofschneider PH. Gene transfer into mouse lyoma
cells by electroporation in high electric fields. EMBO
J 1982;1: 841-845.
23. Rols MP. Electropermeabilization, a physical method
for the delivery of therapeutic molecules into cells.
Biochim Biophys Acta 2006; 1758:423-428.
The Evaluation of Electroporation Parameters for Dental Pulp Mesenchymal Stem Cells
Objective: The aim of this study was to perform Green
Fluorescent Protein (GFP) gene delivery to dental pulp
derived mesenchymal stromal cells (DP-MSC) and optimize the electroporation parameters.
Materials and Methods: DP-MSCs were transfected
with GFP gene (Neon Transfection System). Five different electroporation parameters (1200v,20ms,1puls;
1 2 0 0 v , 2 0 m s , 2 p u l s ; 1 3 0 0 v , 4 0 m s , 1 p u l s ;
1400v,20ms,1puls; 1400v,20ms,2puls) were compared
for optimization. After transfection the viability and
apoptosis of cells were analyzed in 0, 24 and 48. hours.
Fluorescent light density was examined under fluorescent microscope.
Results: CD 29 and CD 44 were positive and CD45 was
negative for DP-MSCs. Higher number of viable cells,
higher expression of GFP and less apoptosis were found
in 1200v, 20ms, 1puls electroporation parameters than
other groups in different parameters.
Conclusion: Rabbit animal model is generally used in
various tissue engineering applications. The results of
our study demonstrate optimal electroporation conditions for rabbit DP-MSCs.
1. Moraleda JM, Blanquer M, Bleda P, et al. Adult stem
cell therapy: Dream or reality. Transpl Immunol
2006; 17:74–77.
2. Caplan AL, Bruder SP. Mesenchymal Stem cells:
Building blocks for molecular medicine in the 21st
century. Trends Mol Med 2001; 7:259–264.
3. Gronthos S, Mankani M, Brahim J, et al. Postnatal
human dental pulp stem cells (DPSCs) in vitro and in
vivo. Proc Natl Acad Sc 2000; 97:13625–13630.
4. Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells
from human exfoliated deciduous teeth. Proc Natl
Acad Sci 2003; 100:5807–5812.
5. Seo BM, Miura M, Gronthos S, et al. Investigation of
multipotent postnatal stem cells from human
periodontal ligament. Lancet 2004; 364:149–155.
6. Morsczeck C, Gotz W, Schierholz J, et al. Isolation of
precursor cells (PCs) from human dental follicle of
wisdom teeth. Matrix Biol 2005; 24:155–165.
7. Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem
cell-mediated functional tooth regeneration in
swine. PLoS One 2006; 79:1–8.
8. 8. Sharpe PT, Young CS. Tube-tube teeth. Sci Am
2005; 293:34–41.
9. Loomba K, Bains R, Bains VK, et al. Tissue
engineering and its application in endodontics: An
overview. ENDO (Lond Engl) 2012; 6:105–112.
10. Nakashima M. Tissue engineering in endodontics.
Aust Endod J 2005; 31:111–113.
11. Iohara K, Nakashima M, Ito M, et al. Dentin
regeneration by dental pulp stem cell therapy with
recombinant human bone morphogenic protein 2. J
Dent Res 2004; 83:590–595.
12. Karaoz E, Dogan BN, Aksoy A, et al. Isolation and in
vitro characterization of dental pulp stem cells from
natal teeth. Histochemistry and Cell Biology 2010;
133:95–112.
13. Suchánek J, Soukup T, Ivancaková R, et al. Human
dental pulp stem cells-isolation and long term
cultivation. Acta Medica (Hradec Kralove) 2007; 50:
195-201.
14. Lee UL , Jeon SH, Park JY, Choung PH. Effect of
platelet-rich plasma on dental stem cells derived
from human impacted third molars. Regen Med
2011; 6: 67-79.
15. Rizk A, Rabie BM. Electroporation for transfection
and differentiation of dental pulp stem cells.
BioResearch 2013; 2:155-162.
16. Rizk A, Rabie AB. Human dental pulp stem cells
expressing transforming growth factor β3 transgene
for cartilage-like tissue engineering. Cytotherapy
2013; 15:712-725.
17. Rane MJ, Arthur JM, Prossnitz ER, McLeish KR.
Activation of mitogen-activated protein kinases by
formyl peptide receptors is regulated by the
cytoplasmictail.JBiolChem1998; 273:20916-20923.
18. Meier J, Vannier C, Sergé A, et al. Fast and reversible
trapping of surface glycine receptors by gephyrin.
Nat Neurosci 2001; 4:253-260.
19. Cao X, Deng W, Wei Y. Incorporating ptgf-β1/calcium
phosphate nanoparticles with fibronectin into 3-
dimensional collagen/chitosan Scaffolds: Effıcient,
sustained gene delivery to stem cells for
Chondrogenic differentiation. Eur Cell Mater
2012;23:81-93.
20. Ferreira E, Potier E, Logeart-Avramoglou D, et al.
Optimization of a gene electrotransfer method for
mesenchymal stem cell transfection. Gene Ther
2008; 15:537–544.
21. Yalvac ME, Ramazanoglu M, Gumru OZ, et al.
Comparison and optimisation of transfection of
human dental follicle cells, a novel source of stem
cells, with different chemical methods and
electroporation. Neurochem Res 2009; 34: 1272-
1277.
22. Neumann E, Schaefer-Ridder M, Wang Y,
Hofschneider PH. Gene transfer into mouse lyoma
cells by electroporation in high electric fields. EMBO
J 1982;1: 841-845.
23. Rols MP. Electropermeabilization, a physical method
for the delivery of therapeutic molecules into cells.
Biochim Biophys Acta 2006; 1758:423-428.