BibTex RIS Kaynak Göster

FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ

Yıl 2017, Cilt: 26 Sayı: 1, 64 - 70, 01.03.2017

Öz

Bu çalışmanın amacı, eşit yükler altında farklı uzunluktaki silindirik implantlarda oluşan stres dağılımının
sonlu elemanlar stres analizi ile değerlendirilmesidir.
Çalışmamızda 3,2 mm çapında 8 mm ve 10 mm uzunluğunda silindirik implantlar karşılaştırılmıştır.
Çalışmamızda sonlu elemanlar stres analizi ile 150 N
oblik yük altında implantlarda ve kemikte oluşan stres- gerinim miktarları incelenmiştir.
Sonlu elemanlar analizi sonuçlarına bakıldığında; implantlar üzerinde oluşan Von Mises stresin istenilen
aralıkta olduğu ve 4. sertlik titanyumun dayanım sınırları içerinde yer aldığı fakat kemikte oluşan asal gerinim
miktarının ise Frost’un “Mekanostat” teorisinde belirtilen sınırlardan yüksek olduğu gözlenmiştir.
Sonuç olarak 8 ve 10 mm uzunluğa sahip silindirik implantlarda, aradaki uzunluk farkının ne implantlarda ne
de kemikte oluşan stres miktarını önemli ölçüde etkilemediği görülmüştür.

Kaynakça

  • Testori T, Weinstein R, Wallace S. Maxillary sinus surgery and alternatives in treatment, Quintessence Publishing Co, London, 2009.
  • Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res 2006; 17(S2): 35-51.
  • Chen ST, Buser D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int J Oral Maxillofac Implants 2009;24: 13-18.
  • Block MS, Kent JN. Sinus augmentation for dental implants: The use of autogenous bone. J Oral Maxillofac Surg 1997; 55(11): 1281-1286.
  • Stevens P, Fredrickson E, Gres M. Implant prosthodontics: Clinical and laboratory procedures, Mosby, St Louis, 1994: 35.
  • Friberg B, Ekestubbe A, Sennerby L. Clinical Outcome of Brånemark System Implants of Various Diameters: A Retrospective Study. Int J Oral Maxillofac 2002; 17(5): 32-38.
  • Gotfredsen K, Karlsson U. A prospective 5‐year study of fixed partial prostheses supported by implants with machined and TiO2‐blasted surface. J Prosthodont 2001; 10(1): 2-7.
  • Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three -dimensional finite element analysis. J Prosthet Dent 2008; 100(6): 422-431.
  • Chun HJ, Cheong SY, Han JH, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002; 29(6): 565-574.
  • Hansson S, Werke M. The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: A finite element study. J Biomech 2003; 36(9): 1247-1258.
  • Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod 2004; 74 (1): 3-15.
  • Frost HM. Bone “mass” and the “mechanostat”: A proposal. Anatomic Rec 1987; 219(1): 1-9.
  • Frost HM. The laws of bone structure, CC Thomas, Springfield, 1964.
  • Romeo E, Lops D, Amorfini L, Chiapasco M, Ghisolfi M, Vogel G. Clinical and radiographic evaluation of small‐diameter (3.3‐mm) implants followed for 1–7 years: A longitudinal study. Clin Oral Implants Res 2006; 17(2): 139-148.
  • Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants 1993; 8(1): 33-58.
  • Kirsch A. The IMZ endosseous two phase implant system: a complete oral rehabilitation treatment concept. J Oral Implantol 1986; 12: 576-589.
  • Lavelle CL. Biomechanical considerations of prosthodontic therapy: The urgency of research into alveolar bone responses. Int J Oral Maxillofac Implants 1993; 8(2): 179-185.
  • Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995; 10(3): 326-334.
  • Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995; 10(1): 99-108.
  • Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983; 49(6): 843-848.
  • Craig, RG., Kamal A, Floyd AP. Restorative Dental Materials, C.V. Mosby Co, Saint Louis, 1975: 78-96.
  • Clelland NL, Lee JK, Bimbenet OC, Brantley WA. A three‐dimensional finite element stress analysis of angled abutments for an implant placed in the anterior maxilla. J Prosthodont 1995; 4(2): 95- 100.
  • Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI® Dental Implant System: A consensus report. Clin Oral Implants Res 2000; 11(s1): 33- 58.
  • Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: A finite-element analysis. J Craniomaxillofac Surg 2001; 29(2): 100 -105.
  • Bidez MW, Misch CE, Misch C. Clinical biomechanics in implant dentistry. Dent Implant Prosthet 2005; 18(3): 338-339.
  • Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1996; 23(3): 104-111.
  • Sato Y, Wadamoto M, Tsuga K, Teixeira E. The effectiveness of element downsizing on a three‐ dimensional finite element model of bone trabeculae in implant biomechanics. J Oral Rehabil 1999; 26(4): 288-291.
  • Eser A, Akca K, Eckert S, Cehreli MC. Nonlinear finite element analysis versus ex vivo strain gauge measurements on immediately loaded implants. Int J Oral Maxillofac Implants 2009; 24(3): 439- 446.
  • Keyak J, Fourkas M, Meagher J, Skinner H. Validation of an automated method of three- dimensional finite element modelling of bone. J Biomed Eng 1993; 15(6): 505-509.
  • Keyak J, Fourkas M, Meagher J, Skinner H. Validation of an automated method of three- dimensional inite element modelling of bone. J Biomed Eng 1993; 15(6): 505-509.
  • Iplikçioğlu H, Akça K. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent 2002; 30(1): 41-46.
  • Huang HL, Huang JS, Ko CC, et al. Effects of splinted prosthesis supported a wide implant or two implants: A three‐dimensional finite element analysis. Clin Oral Implants Res 2005; 16(4): 466- 472.
  • Chang S-H, Lin C-L, Hsue S-S, Lin Y-S, Huang S-R. Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla. Med Eng Phys 2012; 34(2): 153-160.
  • Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont 2002; 15(1): 20-27.
  • Ikebe K, Nokubi T, Morii K, Kashiwagi J, Furuya M. Association of bite force with ageing and occlusal support in older adults. J Dent 2005; 33(2): 131- 137.
  • Osman RB, Elkhadem AH, Ma S, Swain MV. Finite element analysis of a novel implant distribution to support maxillary overdentures. Int J Oral Maxillofac Implants 2013; 28(1): 1-10.
  • Lofaj F, Kučera J, Németh D, Kvetková L. Finite element analysis of stress distributions in mono- and bi-cortical dental implants. Mat Science Eng 2015; 50: 85-96.
  • Çelik E. Dinamik Yükleme Yapılan Kısa İmplantlarda Kron/İmplant Oranının Stres Dağılımına Etkisinin İncelenmesi, Doktora Tezi, Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara 2012: 8-15.
  • Sevimay M, Turhan F, Kiliçarslan M, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005 ;93(3): 227-234.
  • Wyatt C, Zarb GA. Treatment outcomes of patients with implant-supported fixed partial prostheses, Master thesis, University of Toronto, Toronto 1996.
  • Das Neves FD, Fones D, Bernardes SR, do Prado CJ, Neto AJF. Short implants--an analysis of longitudinal studies. Int J Oral Maxillofac Implants 2006; 21(1): 86-93.
  • Bahat O. Treatment planning and placement of implants in the posterior maxillae: Report of 732 consecutive Nobelpharma implants. Int J Oral Maxillofac Implants 1993; 8(2): 151-161.
  • Block MS, Delgado A, Fontenot MG. The effect of diameter and length of hydroxylapatite-coated dental implants on ultimate pullout force in dog alveolar bone. J Oral Maxillofac Surg 1990; 48(2): 174-178.
  • Friberg B, Gröndahl K, Lekholm U, Brånemark PI. Long‐term follow‐up of severely atrophic edentulous mandibles reconstructed with short branemark implants. Clin Implant Dent Relat Res 2000; 2(4): 184-189.
  • Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Brånemark dental implants: A study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991; 6(2): 27-35.

Evalution of Stress Amounts on Different Length Cylindric Implants via Finite Element Analysis

Yıl 2017, Cilt: 26 Sayı: 1, 64 - 70, 01.03.2017

Öz

The aim of this study was to investigate stress amounts
on different length cylindric implants with finite element analysis. In our study 3,2 mm diameter 8 mm and
10 mm length cylindric implants were compared.
We analyzed stress-strain amounts of implants and
bone, under 150 N oblique loads with finite element
analysis.
According to finite element analysis results, Von Mises
stres on implants were within durability limits of grade
4 titanium. However, strain amounts on bone were out
of range according to the Frost’s “Mekanostat” theory .
In conclusion, the length is not a main factor to determine the stress levels on the implants and bone in 8 and
10 mm length cylindric implants.

Kaynakça

  • Testori T, Weinstein R, Wallace S. Maxillary sinus surgery and alternatives in treatment, Quintessence Publishing Co, London, 2009.
  • Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res 2006; 17(S2): 35-51.
  • Chen ST, Buser D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int J Oral Maxillofac Implants 2009;24: 13-18.
  • Block MS, Kent JN. Sinus augmentation for dental implants: The use of autogenous bone. J Oral Maxillofac Surg 1997; 55(11): 1281-1286.
  • Stevens P, Fredrickson E, Gres M. Implant prosthodontics: Clinical and laboratory procedures, Mosby, St Louis, 1994: 35.
  • Friberg B, Ekestubbe A, Sennerby L. Clinical Outcome of Brånemark System Implants of Various Diameters: A Retrospective Study. Int J Oral Maxillofac 2002; 17(5): 32-38.
  • Gotfredsen K, Karlsson U. A prospective 5‐year study of fixed partial prostheses supported by implants with machined and TiO2‐blasted surface. J Prosthodont 2001; 10(1): 2-7.
  • Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three -dimensional finite element analysis. J Prosthet Dent 2008; 100(6): 422-431.
  • Chun HJ, Cheong SY, Han JH, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002; 29(6): 565-574.
  • Hansson S, Werke M. The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: A finite element study. J Biomech 2003; 36(9): 1247-1258.
  • Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod 2004; 74 (1): 3-15.
  • Frost HM. Bone “mass” and the “mechanostat”: A proposal. Anatomic Rec 1987; 219(1): 1-9.
  • Frost HM. The laws of bone structure, CC Thomas, Springfield, 1964.
  • Romeo E, Lops D, Amorfini L, Chiapasco M, Ghisolfi M, Vogel G. Clinical and radiographic evaluation of small‐diameter (3.3‐mm) implants followed for 1–7 years: A longitudinal study. Clin Oral Implants Res 2006; 17(2): 139-148.
  • Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants 1993; 8(1): 33-58.
  • Kirsch A. The IMZ endosseous two phase implant system: a complete oral rehabilitation treatment concept. J Oral Implantol 1986; 12: 576-589.
  • Lavelle CL. Biomechanical considerations of prosthodontic therapy: The urgency of research into alveolar bone responses. Int J Oral Maxillofac Implants 1993; 8(2): 179-185.
  • Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995; 10(3): 326-334.
  • Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995; 10(1): 99-108.
  • Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983; 49(6): 843-848.
  • Craig, RG., Kamal A, Floyd AP. Restorative Dental Materials, C.V. Mosby Co, Saint Louis, 1975: 78-96.
  • Clelland NL, Lee JK, Bimbenet OC, Brantley WA. A three‐dimensional finite element stress analysis of angled abutments for an implant placed in the anterior maxilla. J Prosthodont 1995; 4(2): 95- 100.
  • Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI® Dental Implant System: A consensus report. Clin Oral Implants Res 2000; 11(s1): 33- 58.
  • Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: A finite-element analysis. J Craniomaxillofac Surg 2001; 29(2): 100 -105.
  • Bidez MW, Misch CE, Misch C. Clinical biomechanics in implant dentistry. Dent Implant Prosthet 2005; 18(3): 338-339.
  • Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1996; 23(3): 104-111.
  • Sato Y, Wadamoto M, Tsuga K, Teixeira E. The effectiveness of element downsizing on a three‐ dimensional finite element model of bone trabeculae in implant biomechanics. J Oral Rehabil 1999; 26(4): 288-291.
  • Eser A, Akca K, Eckert S, Cehreli MC. Nonlinear finite element analysis versus ex vivo strain gauge measurements on immediately loaded implants. Int J Oral Maxillofac Implants 2009; 24(3): 439- 446.
  • Keyak J, Fourkas M, Meagher J, Skinner H. Validation of an automated method of three- dimensional finite element modelling of bone. J Biomed Eng 1993; 15(6): 505-509.
  • Keyak J, Fourkas M, Meagher J, Skinner H. Validation of an automated method of three- dimensional inite element modelling of bone. J Biomed Eng 1993; 15(6): 505-509.
  • Iplikçioğlu H, Akça K. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent 2002; 30(1): 41-46.
  • Huang HL, Huang JS, Ko CC, et al. Effects of splinted prosthesis supported a wide implant or two implants: A three‐dimensional finite element analysis. Clin Oral Implants Res 2005; 16(4): 466- 472.
  • Chang S-H, Lin C-L, Hsue S-S, Lin Y-S, Huang S-R. Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla. Med Eng Phys 2012; 34(2): 153-160.
  • Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont 2002; 15(1): 20-27.
  • Ikebe K, Nokubi T, Morii K, Kashiwagi J, Furuya M. Association of bite force with ageing and occlusal support in older adults. J Dent 2005; 33(2): 131- 137.
  • Osman RB, Elkhadem AH, Ma S, Swain MV. Finite element analysis of a novel implant distribution to support maxillary overdentures. Int J Oral Maxillofac Implants 2013; 28(1): 1-10.
  • Lofaj F, Kučera J, Németh D, Kvetková L. Finite element analysis of stress distributions in mono- and bi-cortical dental implants. Mat Science Eng 2015; 50: 85-96.
  • Çelik E. Dinamik Yükleme Yapılan Kısa İmplantlarda Kron/İmplant Oranının Stres Dağılımına Etkisinin İncelenmesi, Doktora Tezi, Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara 2012: 8-15.
  • Sevimay M, Turhan F, Kiliçarslan M, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005 ;93(3): 227-234.
  • Wyatt C, Zarb GA. Treatment outcomes of patients with implant-supported fixed partial prostheses, Master thesis, University of Toronto, Toronto 1996.
  • Das Neves FD, Fones D, Bernardes SR, do Prado CJ, Neto AJF. Short implants--an analysis of longitudinal studies. Int J Oral Maxillofac Implants 2006; 21(1): 86-93.
  • Bahat O. Treatment planning and placement of implants in the posterior maxillae: Report of 732 consecutive Nobelpharma implants. Int J Oral Maxillofac Implants 1993; 8(2): 151-161.
  • Block MS, Delgado A, Fontenot MG. The effect of diameter and length of hydroxylapatite-coated dental implants on ultimate pullout force in dog alveolar bone. J Oral Maxillofac Surg 1990; 48(2): 174-178.
  • Friberg B, Gröndahl K, Lekholm U, Brånemark PI. Long‐term follow‐up of severely atrophic edentulous mandibles reconstructed with short branemark implants. Clin Implant Dent Relat Res 2000; 2(4): 184-189.
  • Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Brånemark dental implants: A study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991; 6(2): 27-35.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA24CK76YK
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Taha Yaşar Bu kişi benim

Erdem Kılıç Bu kişi benim

Alper Alkan Bu kişi benim

Yayımlanma Tarihi 1 Mart 2017
Gönderilme Tarihi 1 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 26 Sayı: 1

Kaynak Göster

APA Yaşar, M. T., Kılıç, E., & Alkan, A. (2017). FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ. Sağlık Bilimleri Dergisi, 26(1), 64-70.
AMA Yaşar MT, Kılıç E, Alkan A. FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ. JHS. Mart 2017;26(1):64-70.
Chicago Yaşar, Mustafa Taha, Erdem Kılıç, ve Alper Alkan. “FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ”. Sağlık Bilimleri Dergisi 26, sy. 1 (Mart 2017): 64-70.
EndNote Yaşar MT, Kılıç E, Alkan A (01 Mart 2017) FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ. Sağlık Bilimleri Dergisi 26 1 64–70.
IEEE M. T. Yaşar, E. Kılıç, ve A. Alkan, “FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ”, JHS, c. 26, sy. 1, ss. 64–70, 2017.
ISNAD Yaşar, Mustafa Taha vd. “FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ”. Sağlık Bilimleri Dergisi 26/1 (Mart 2017), 64-70.
JAMA Yaşar MT, Kılıç E, Alkan A. FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ. JHS. 2017;26:64–70.
MLA Yaşar, Mustafa Taha vd. “FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ”. Sağlık Bilimleri Dergisi, c. 26, sy. 1, 2017, ss. 64-70.
Vancouver Yaşar MT, Kılıç E, Alkan A. FARKLI UZUNLUKTAKİ SİLİNDİRİK İMPLANTLARDA OLUŞAN STRES MİKTARININ SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ. JHS. 2017;26(1):64-70.