Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of antimicrobial effects of zinc-based nanoparticles on food-borne pathogens

Yıl 2023, Cilt: 4 Sayı: 3, 132 - 137, 30.12.2023
https://doi.org/10.51753/flsrt.1344431

Öz

In this study, the antimicrobial effects of three different zinc-based nanoparticles, namely zinc oxide (ZnO), zinc chloride (ZnCl2), and zinc ferrite (ZnFe2O4), on food-borne pathogen were investigated. ZnO and ZnCl2 nanoparticles were obtained as commercially, but ZnFe2O4 nanoparticles were produced via sol-gel auto-combustion method. From the XRD results of ZnFe2O4 nanoparticle, it was found that all the peaks agreed with the literature. However, there was also small amount of the secondary phase peaks corresponding to the ferrite (Fe2O3) phases. Significant differences were observed between the inhibition effects of nanoparticles on bacteria in the disc diffusion method (p<0.005), except for the ZnFe2O4 nanoparticle, which has no effect on bacteria at the used dose. ZnO nanoparticle was observed to have the lowest inhibition zone on the Gram-negative bacterium Campylobacter jejuni of inhibition compared to other test bacteria. It was found that ZnFe2O4 had the highest value of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-negative bacteria.

Kaynakça

  • Abbasian A. R., & Afarani, M. S. (2019). One‑step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe1.6O4 Nanoparticles. Applied Physics A, 125, 1-12.
  • Al-Byati, M. K. A. A., & Al-Duhaidahawi, A. M. J. (2023). Synthesis and characterization of zinc oxide nanoparticles by electrochemical method for environmentally friendly dye-sensitized solar cell applications (DSSCs). Biomedicine and Chemical Sciences, 2(1), 53-57.
  • Ansari, M. A. (2023). Nanotechnology in food and plant science: challenges and future prospects. Plants, 12(13), 2565.
  • Asad, F., Batool, N., Nadeem, A., Bano, S., Anwar, N., Jamal, R., & Ali, S. (2023). Fe-NPs and Zn-NPs: Advancing aquaculture performance through nanotechnology. Biological Trace Element Research, 1-15.
  • Baran, A., Hatipoglu, A., Baran, M. F., & Aktepe, N. (2021). Synthesis of gold nanoparticles from hawthorn (Crataegus monogyna) fruit extract and evaluation of antimicrobial activities. European Journal of Science and Technology Special Issue, 32, 974-978.
  • Badiger, H., Matteppanavar, S., & Hegde, B. G. (2023). Structural, electrical and magnetic properties of low dimensional Pr-doped Co-Zn ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism, 36(2), 675-684.
  • Baker, T. J., Tyler, C. R., & Galloway, T. S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257-271.
  • Bhushan, B. (2010). Introduction to nanotechnology. In B. Bhushan (Ed.), Springer-Verlag Springer handbook of nanotechnology, 3rd ed., pp. 1–13.
  • Bueno, J. (2015). Antimicrobial models in nanotechnology: from the selection to application in the control and treatment of infectious diseases. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Elsevier Inc., 19-38.
  • Chen, J., Liu, X., Wang, C., Yin, S. S., Li, X. L., Hu, W. J., ... & Zheng, H. L. (2015). Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. Journal of Hazardous Materials, 297, 173-182.
  • Chowdhury, M. A. H., Ashrafudoulla, M., Mevo, S. I. U., Mizan, M. F. R., Park, S. H., & Ha, S. D. (2023). Current and future interventions for improving poultry health and poultry food safety and security: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1555-1596.
  • Demirci, F., Guven, K., Demirci, B., Dadandi, M. Y., & Baser, K. H. C. (2008). Antibacterial activity of two Phlomis essential oils against food pathogens. Food control, 19(12), 1159-1164.
  • Erdogan O., Birtekocak F., Oryasin E., Abbak M., Demirpolat G. M., Pasa S., & Cevik O., (2019). Green Synthesis, characterization, anti-bacterial and cytotoxic effects of zinc oxide nanoparticles using aqueous extract of artichoke leafs. Duzce Medical Journal, 21(1), 19-26.
  • Eren, A., & Baran, M. F. (2019). Fıstık (Pistacia vera L.) Yaprağından gümüş nanopartikül (AgNP)'lerin sentezi, karakterizasyonu ve antimikrobiyal aktivitesinin incelenmesi, Türkiye Tarımsal Araştırmalar Dergisi, 6(2), 165-173.
  • Ergin, I., İçin, K., Gungunes, H., & Ozcelik, B. (2023). Detailed studies on structural, morphological, optical, magnetic and mossbauer properties of Cu-substituted cobalt ferrite nanoparticles. Physica Scripta, 98(3), 035807.
  • Erkoc, S. (2012). Nanobilim ve nanoteknoloji. ODTÜ Yayıncılık, 1-208.
  • Friedman, M., Henika, P. R., & Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of food protection, 65(10), 1545-1560.
  • Garg, J., Chiu, M. N., Krishnan, S., Kumar, R., Rifah, M., Ahlawat, P., ... & Gupta, P. K. (2023). Emerging trends in zinc ferrite nanoparticles for biomedical and environmental applications. Applied Biochemistry and Biotechnology, 2(1), 49-56.
  • Gunay, K., Leblebici, Z., & Koca, F. D. (2021). Çinko nanopartiküllerinin (ZnO NP) biyosentezi, karakterizasyonu ve anti-bakteriyel etkisinin incelenmesi. Nevşehir Bilim ve Teknoloji Dergisi, 10(1), 56-66.
  • Hanley, C., Layne, J., Punnoose, A., Reddy, K., Coombs, I., Coombs, A., ... & Wingett, D. (2008). Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology, 19(29), 295103.
  • Joshi, A., & Srivastava, R. C. (2023). Study of structural, electrical, and magnetic properties of Co-Zn ferrite and Co-Zn ferrite/polythiophene nanocomposite. Materials Today: Proceedings, 78, 774-779.
  • Hatami, K. K., Baghbantaraghdari, Z., Jamaledin, D., Dabbagh Moghaddam, F., Kaneko, N., & Ghovvati, M. (2023). Synthesis, characterization, antioxidant and antibacterial activities of zinc ferrite and copper ferrite nanoparticles. Materials Chemistry Horizons, 2(1), 49-56.
  • Heiba, Z. K., Arda, L., Dogan, N., Karatas, O., & Mohamed, M. B. (2022). The investigation of structural and magnetic properties of Er2− xCoxO3 nano-oxides. Journal of Materials Science: Materials in Electronics, 1-10. Kanematsu, H., & Barry, D. M. (Eds.). (2015). Biofilm and materials science. Springer.
  • Kavitha, A., Doss, A., Pole, R. P., Rani, T. K. P., Prasad, R., & Satheesh, S. (2023). A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency. Biocatalysis and Agricultural Biotechnology, 102654.
  • Khan, S. T., Musarrat, J., & Al-Khedhairy, A. A. (2016). Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids and Surfaces B: Biointerfaces, 146, 70-83.
  • Kuang, H., Yang, P., Yang, L., Aguilar, Z. P., & Xu, H. (2016). Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. Journal of Hazardous Materials, 317, 119-126.
  • Lakra, R., Kumar, R., Meshram, N., Singh, M., Choudhary, D., Jain, N., ... & Soam, A. (2023). Fabrication of ternary composite ZnFe2O4/Co3O4/G for high performance supercapacitor. MRS Advances, 1-6.
  • Lazar, V., Holban, A. M., Curutiu, C., & Ditu, L. M. (2022). Modulation of gut microbiota by essential oils and inorganic nanoparticles: Impact in nutrition and health. Frontiers in Nutrition, 9, 920413.
  • Li, Y. X., Erhunmwunsee, F., Liu, M., Yang, K., Zheng, W., & Tian, J. (2022). Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry, 382, 132312.
  • Malik, S., Muhammad, K., & Waheed, Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28(18), 6624.
  • Morais, R. P., Hochheim, S., de Oliveira, C. C., Riegel-Vidotti, I. C., & Marino, C. E. (2022). Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. International Journal of Pharmaceutics, 614, 121439.
  • Mshelia, R. D. Z., Dibal, N. I., & Chiroma, S. M. (2023). Food irradiation: An effective but under-utilized technique for food preservations. Journal of Food Science and Technology, 60(10), 2517-2525.
  • Nair, S., Sasidharan, A., Divya Rani, V. V., Menon, D., Nair, S., Manzoor, K., & Raina, S. (2009). Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 20, 235-241.
  • Naseri, G. M., Saion, E. B., & Kamali, A. (2012). An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. International Scholarly Research Notices, 2012.
  • Negrut, N., Khan, S. A., Bungau, S., Zaha, D. C., Anca, C. A., Bratu, O., ... & Ionita-Radu, F. (2020). Diagnostic challenges in gastrointestinal infections. Romanian Journal of Military Medicine, 123, 83-90.
  • Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: problems and solutions. Trends in Plant Science, 13(9), 464-473.
  • Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 7(2), 184-192.
  • Robinson, D. K. R., & Morrison, M. (2009). Nanotechnology Developments for the Agrifood sector-Report of the ObservatoryNANO. Institute of Nanotechnology, UK.
  • Santhoskumar, J., Kumar, S. V., & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3(4), 459-465.
  • Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V., & Sujatha, H. R. (2020). Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. Journal of Materials Science: Materials in Electronics, 31, 8589-8596.
  • Sebastian, V., & Gimenez, M. (2016). Teaching Nanoscience and thinking nano at the macroscale: Nanocapsules of wisdom. Procedia-Social and Behavioral Sciences, 228, 489-495.
  • Senturk, K., Yalcin, B., Yalcin, I. E., Alphan, M. C., Sengul, M. S., Tav, C., ... & Arda, L. (2023). The role of defects in the structural and photocatalytic properties of Mg/B co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 34(9), 847.
  • Shetty, P. K., Venuvanka, V., Jagani, H. V., Chethan, G. H., Ligade, V. S., Musmade, P. B., Nayak, U. Y., Reddy, M. S., ... & Mutalik, S. (2015). Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International Journal of Nanomedicine, 6477-6491.
  • Siddiqui, S. A., Singh, S., Bahmid, N. A., Mehany, T., Shyu, D. J., Assadpour, E., ... & Jafari, S. M. (2023). Release of encapsulated bioactive compounds from active packaging/coating materials and ıts modeling: a systematic review. Colloids and Interfaces, 7(2), 25.
  • Singh, N. A. (2017). Nanotechnology innovations, industrial applications and patents. Environmental Chemistry Letters, 15(2), 185-191.
  • Sutradhar, P., & Saha, M. (2016). Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. Journal of Experimental Nanoscience, 11(5), 314-27.
  • Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9), 1199-1218.
  • Tarhan, O., Gokmen, V., & Harsa, S. (2010). Nanoteknolojinin gıda bilim ve teknolojisi alanındaki uygulamaları. Gıda, 35(3), 219-225.
  • Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., Da Fonseca, G. A., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. BioScience, 57(10), 868-873.
  • Yalcin, B. (2022). Exploration of the potential of Co/Cu co-doped Fe2O4 for medical applications: nanostructure, catalytic properties, and blood compatibility. Journal of Nanoparticle Research, 24(12), 271.
  • Yalcin, B., Arda, L., Yalcin, I. E., Senturk, K., Alphan, M. C., Akcan, D., & Ozyigit, I. I. (2023). Exploration of the improving effect of Cd-doping on structural, photocatalytic, and biological properties of ZnO nanoparticles. Journal of Nanoparticle Research, 25(7), 146.
  • Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R. M., Liu, Y., ... & Tan, S. K. (2015). Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere, 120, 211-219.
  • Zhang, M., Ahmed, A., & Xu, L. (2023). Electrospun nanofibers for functional food packaging application. Materials, 16(17), 5937.
Yıl 2023, Cilt: 4 Sayı: 3, 132 - 137, 30.12.2023
https://doi.org/10.51753/flsrt.1344431

Öz

Kaynakça

  • Abbasian A. R., & Afarani, M. S. (2019). One‑step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe1.6O4 Nanoparticles. Applied Physics A, 125, 1-12.
  • Al-Byati, M. K. A. A., & Al-Duhaidahawi, A. M. J. (2023). Synthesis and characterization of zinc oxide nanoparticles by electrochemical method for environmentally friendly dye-sensitized solar cell applications (DSSCs). Biomedicine and Chemical Sciences, 2(1), 53-57.
  • Ansari, M. A. (2023). Nanotechnology in food and plant science: challenges and future prospects. Plants, 12(13), 2565.
  • Asad, F., Batool, N., Nadeem, A., Bano, S., Anwar, N., Jamal, R., & Ali, S. (2023). Fe-NPs and Zn-NPs: Advancing aquaculture performance through nanotechnology. Biological Trace Element Research, 1-15.
  • Baran, A., Hatipoglu, A., Baran, M. F., & Aktepe, N. (2021). Synthesis of gold nanoparticles from hawthorn (Crataegus monogyna) fruit extract and evaluation of antimicrobial activities. European Journal of Science and Technology Special Issue, 32, 974-978.
  • Badiger, H., Matteppanavar, S., & Hegde, B. G. (2023). Structural, electrical and magnetic properties of low dimensional Pr-doped Co-Zn ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism, 36(2), 675-684.
  • Baker, T. J., Tyler, C. R., & Galloway, T. S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257-271.
  • Bhushan, B. (2010). Introduction to nanotechnology. In B. Bhushan (Ed.), Springer-Verlag Springer handbook of nanotechnology, 3rd ed., pp. 1–13.
  • Bueno, J. (2015). Antimicrobial models in nanotechnology: from the selection to application in the control and treatment of infectious diseases. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Elsevier Inc., 19-38.
  • Chen, J., Liu, X., Wang, C., Yin, S. S., Li, X. L., Hu, W. J., ... & Zheng, H. L. (2015). Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. Journal of Hazardous Materials, 297, 173-182.
  • Chowdhury, M. A. H., Ashrafudoulla, M., Mevo, S. I. U., Mizan, M. F. R., Park, S. H., & Ha, S. D. (2023). Current and future interventions for improving poultry health and poultry food safety and security: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1555-1596.
  • Demirci, F., Guven, K., Demirci, B., Dadandi, M. Y., & Baser, K. H. C. (2008). Antibacterial activity of two Phlomis essential oils against food pathogens. Food control, 19(12), 1159-1164.
  • Erdogan O., Birtekocak F., Oryasin E., Abbak M., Demirpolat G. M., Pasa S., & Cevik O., (2019). Green Synthesis, characterization, anti-bacterial and cytotoxic effects of zinc oxide nanoparticles using aqueous extract of artichoke leafs. Duzce Medical Journal, 21(1), 19-26.
  • Eren, A., & Baran, M. F. (2019). Fıstık (Pistacia vera L.) Yaprağından gümüş nanopartikül (AgNP)'lerin sentezi, karakterizasyonu ve antimikrobiyal aktivitesinin incelenmesi, Türkiye Tarımsal Araştırmalar Dergisi, 6(2), 165-173.
  • Ergin, I., İçin, K., Gungunes, H., & Ozcelik, B. (2023). Detailed studies on structural, morphological, optical, magnetic and mossbauer properties of Cu-substituted cobalt ferrite nanoparticles. Physica Scripta, 98(3), 035807.
  • Erkoc, S. (2012). Nanobilim ve nanoteknoloji. ODTÜ Yayıncılık, 1-208.
  • Friedman, M., Henika, P. R., & Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of food protection, 65(10), 1545-1560.
  • Garg, J., Chiu, M. N., Krishnan, S., Kumar, R., Rifah, M., Ahlawat, P., ... & Gupta, P. K. (2023). Emerging trends in zinc ferrite nanoparticles for biomedical and environmental applications. Applied Biochemistry and Biotechnology, 2(1), 49-56.
  • Gunay, K., Leblebici, Z., & Koca, F. D. (2021). Çinko nanopartiküllerinin (ZnO NP) biyosentezi, karakterizasyonu ve anti-bakteriyel etkisinin incelenmesi. Nevşehir Bilim ve Teknoloji Dergisi, 10(1), 56-66.
  • Hanley, C., Layne, J., Punnoose, A., Reddy, K., Coombs, I., Coombs, A., ... & Wingett, D. (2008). Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology, 19(29), 295103.
  • Joshi, A., & Srivastava, R. C. (2023). Study of structural, electrical, and magnetic properties of Co-Zn ferrite and Co-Zn ferrite/polythiophene nanocomposite. Materials Today: Proceedings, 78, 774-779.
  • Hatami, K. K., Baghbantaraghdari, Z., Jamaledin, D., Dabbagh Moghaddam, F., Kaneko, N., & Ghovvati, M. (2023). Synthesis, characterization, antioxidant and antibacterial activities of zinc ferrite and copper ferrite nanoparticles. Materials Chemistry Horizons, 2(1), 49-56.
  • Heiba, Z. K., Arda, L., Dogan, N., Karatas, O., & Mohamed, M. B. (2022). The investigation of structural and magnetic properties of Er2− xCoxO3 nano-oxides. Journal of Materials Science: Materials in Electronics, 1-10. Kanematsu, H., & Barry, D. M. (Eds.). (2015). Biofilm and materials science. Springer.
  • Kavitha, A., Doss, A., Pole, R. P., Rani, T. K. P., Prasad, R., & Satheesh, S. (2023). A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency. Biocatalysis and Agricultural Biotechnology, 102654.
  • Khan, S. T., Musarrat, J., & Al-Khedhairy, A. A. (2016). Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids and Surfaces B: Biointerfaces, 146, 70-83.
  • Kuang, H., Yang, P., Yang, L., Aguilar, Z. P., & Xu, H. (2016). Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. Journal of Hazardous Materials, 317, 119-126.
  • Lakra, R., Kumar, R., Meshram, N., Singh, M., Choudhary, D., Jain, N., ... & Soam, A. (2023). Fabrication of ternary composite ZnFe2O4/Co3O4/G for high performance supercapacitor. MRS Advances, 1-6.
  • Lazar, V., Holban, A. M., Curutiu, C., & Ditu, L. M. (2022). Modulation of gut microbiota by essential oils and inorganic nanoparticles: Impact in nutrition and health. Frontiers in Nutrition, 9, 920413.
  • Li, Y. X., Erhunmwunsee, F., Liu, M., Yang, K., Zheng, W., & Tian, J. (2022). Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry, 382, 132312.
  • Malik, S., Muhammad, K., & Waheed, Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28(18), 6624.
  • Morais, R. P., Hochheim, S., de Oliveira, C. C., Riegel-Vidotti, I. C., & Marino, C. E. (2022). Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. International Journal of Pharmaceutics, 614, 121439.
  • Mshelia, R. D. Z., Dibal, N. I., & Chiroma, S. M. (2023). Food irradiation: An effective but under-utilized technique for food preservations. Journal of Food Science and Technology, 60(10), 2517-2525.
  • Nair, S., Sasidharan, A., Divya Rani, V. V., Menon, D., Nair, S., Manzoor, K., & Raina, S. (2009). Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 20, 235-241.
  • Naseri, G. M., Saion, E. B., & Kamali, A. (2012). An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. International Scholarly Research Notices, 2012.
  • Negrut, N., Khan, S. A., Bungau, S., Zaha, D. C., Anca, C. A., Bratu, O., ... & Ionita-Radu, F. (2020). Diagnostic challenges in gastrointestinal infections. Romanian Journal of Military Medicine, 123, 83-90.
  • Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: problems and solutions. Trends in Plant Science, 13(9), 464-473.
  • Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 7(2), 184-192.
  • Robinson, D. K. R., & Morrison, M. (2009). Nanotechnology Developments for the Agrifood sector-Report of the ObservatoryNANO. Institute of Nanotechnology, UK.
  • Santhoskumar, J., Kumar, S. V., & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3(4), 459-465.
  • Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V., & Sujatha, H. R. (2020). Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. Journal of Materials Science: Materials in Electronics, 31, 8589-8596.
  • Sebastian, V., & Gimenez, M. (2016). Teaching Nanoscience and thinking nano at the macroscale: Nanocapsules of wisdom. Procedia-Social and Behavioral Sciences, 228, 489-495.
  • Senturk, K., Yalcin, B., Yalcin, I. E., Alphan, M. C., Sengul, M. S., Tav, C., ... & Arda, L. (2023). The role of defects in the structural and photocatalytic properties of Mg/B co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 34(9), 847.
  • Shetty, P. K., Venuvanka, V., Jagani, H. V., Chethan, G. H., Ligade, V. S., Musmade, P. B., Nayak, U. Y., Reddy, M. S., ... & Mutalik, S. (2015). Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International Journal of Nanomedicine, 6477-6491.
  • Siddiqui, S. A., Singh, S., Bahmid, N. A., Mehany, T., Shyu, D. J., Assadpour, E., ... & Jafari, S. M. (2023). Release of encapsulated bioactive compounds from active packaging/coating materials and ıts modeling: a systematic review. Colloids and Interfaces, 7(2), 25.
  • Singh, N. A. (2017). Nanotechnology innovations, industrial applications and patents. Environmental Chemistry Letters, 15(2), 185-191.
  • Sutradhar, P., & Saha, M. (2016). Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. Journal of Experimental Nanoscience, 11(5), 314-27.
  • Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9), 1199-1218.
  • Tarhan, O., Gokmen, V., & Harsa, S. (2010). Nanoteknolojinin gıda bilim ve teknolojisi alanındaki uygulamaları. Gıda, 35(3), 219-225.
  • Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., Da Fonseca, G. A., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. BioScience, 57(10), 868-873.
  • Yalcin, B. (2022). Exploration of the potential of Co/Cu co-doped Fe2O4 for medical applications: nanostructure, catalytic properties, and blood compatibility. Journal of Nanoparticle Research, 24(12), 271.
  • Yalcin, B., Arda, L., Yalcin, I. E., Senturk, K., Alphan, M. C., Akcan, D., & Ozyigit, I. I. (2023). Exploration of the improving effect of Cd-doping on structural, photocatalytic, and biological properties of ZnO nanoparticles. Journal of Nanoparticle Research, 25(7), 146.
  • Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R. M., Liu, Y., ... & Tan, S. K. (2015). Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere, 120, 211-219.
  • Zhang, M., Ahmed, A., & Xu, L. (2023). Electrospun nanofibers for functional food packaging application. Materials, 16(17), 5937.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanomalzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Sezen Özçelik 0000-0003-2846-2226

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 16 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 3

Kaynak Göster

APA Özçelik, S. (2023). Investigation of antimicrobial effects of zinc-based nanoparticles on food-borne pathogens. Frontiers in Life Sciences and Related Technologies, 4(3), 132-137. https://doi.org/10.51753/flsrt.1344431

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.