Araştırma Makalesi
BibTex RIS Kaynak Göster

Yedinci Sınıf Öğrencilerinin Matematik Okuryazarlığı Sorularının Çözümünde Karşılaştıkları Zorlukların İncelenmesi

Yıl 2020, Cilt: 3 Sayı: 2, 98 - 112, 15.05.2020

Öz

Bu çalışmanın amacı başarı açısından üç farklı düzeydeki öğrencilerin matematik okuryazarlığı sorularının çözümü sürecinde karşılaştıkları zorlukları ve öğrencilerin bu zorlukların üstesinden gelebilmek için ne gibi ipuçlarına ihtiyaç duyduklarını tespit etmektir. Bu çalışmada nitel veri toplama tekniklerinden yarı yapılandırılmış görüşme tekniği kullanılmıştır. Çalışmanın örneklemini, bir devlet okulundaki yedinci sınıfta okuyan 9 öğrenci oluşturmaktadır. Matematik Okuryazarlığı Testi ve bir önceki dönem matematik ortalama puanlarına göre “düşük”, “orta” ve “yüksek” olmak üzere üç farklı seviye grubu oluşturulmuştur. Görüşmelerden elde edilen bulgulara göre, düşük seviyedeki öğrenciler matematik okuryazarlığı sorularını anlamakta güçlük çektikleri, öğretmenin geçmiş konularla ilgili uyarı sonrasında azda olsa bazı soruları çözebildikleri gözlemlenmiştir. Orta düzeydeki öğrencilerin genel olarak soruyu anladıkları ancak matematiksel olarak ifade edemedikleri, öğretmenin basit ipuçları vermesi ile düşük düzey öğrencilerine göre biraz daha fazla soru çözebildikleri tespit edilmiştir. Yüksek düzey öğrenciler ise düşük ve orta düzey öğrencilere göre daha fazla matematik okuryazarlığı sorularını çözebildikleri görülmüştür.


Bu makale için 15-09-2020 tarihinde bir düzeltme yayınlandı. https://dergipark.org.tr/tr/pub/fmgted/issue/60204/873813 

Kaynakça

  • Altun, M., (2011). Eğitim Fakülteleri ve Lise Matematik Öğretmenleri İçin Liselerde Matematik Öğretimi, Alfa Aktüel, Bursa.
  • Beswick, K. (2011). Puttıng context ın context: an examınatıon of the evıdence for the benefıts of ‘contextualısed’ tasks, International Journal of Science and Mathematics Education, 9: 367-390.
  • Boaler, J. (1993a). Encouraging transfer of ‘school’ mathematics to the ‘real world’ through the integration of process and content, context and culture. Educational Studies in Mathematics, 25(4), 341-373.
  • Boaler, J. (1993b). The role of contexts in the mathematics classroom: Do they make mathematics more real? For the Learning of Mathematics, 13(2), 12–17.
  • Boaler, J. (1994). When do girls prefer football to fashion? An analysis of female underachievement in relation to "realistic" mathematics contexts, British Educational Research Journal 20, 551-564.
  • Borasi, R..(1986). On the nature of problems. Educational Studies in Mathematics, 17, 125 41.
  • Borromeo Ferri, R. (2007). Personal experiences and extra-mathematical knowledge as an influence factor on modelling routes of pupils. Paper presented at CERME 5: Fifth Conference of the European Society for Research in Mathematics Education, 2007 in Larnaca, Cyprus.
  • Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62(2), 211–230.
  • Clarkson, P. C., Campus, M. (1991). Language comprehension errors: A further investigation. Mathematics Education Research Journal, 3(2), 24-33.
  • Clements, M. A. (1980). Analyzing children’s errors on written mathematical task. Educational Studies in Mathematics, 11(1), 1-21.
  • Cooper,B . (1992). Testing National Curriculum mathematicss: one critical Comments on the treatment of 'real' contextsf or mathematics, The Curriculum Journal 3(3), 231-243.
  • Cooper, B. & Harries, T. (2002). Children’s responses to contrasting ‘realistic’ mathematics problems: Just how realistic are children ready to be? Educational Studies in Mathematics, 49, 1–23.
  • De Lange, J. (1995). Assessment: No change without problems. In T. A. Romberg (Ed.), Reform in school mathematics (pp. 87–172). Albany: SUNY Press.
  • Ellerton, N. F. & Clements, M. A. (1996). Newman error analysis. A comparative study involving Year 7 students in Malaysia and Australia. In P. C. Clarkson (Ed.), Technology and mathematics education (pp. 186–193). Melbourne: Mathematics Education Research Group of Australasia.
  • Gravemeijer, K. (1994) Developing Realistic Mathematics Education, Utrecht, The Netherlands,C D-B Press/FreudenthaI ln stitute.
  • Gravemeijer, K.P.E. & Doorman, L.M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), pp. 111-129.
  • Greer,B . (1993). The mathematical modeling perspective on wor(l)d problems. Journal of Mathematical Behavior 12, 239-250.
  • Jurdak, M. E. (2006). Contrasting perspectives and performance of high school students on problem solving in real world situated, and school contexts. Educational Studies in Mathematics, 63, 283–301.
  • Mack, N. (1993). Learning ational numbers with understanding the case mathematics more real? For the Learning of Mathematics, 13(2), 12–17.
  • Milli Eğitim Bakanlığı [MEB], (2006). Pisa 2006 Ulusal Nihai Raporu. http://pisa.meb.gov.tr/wp-content/uploads/2013/07/PISA2006-Ulusal-Nihai-Rapor.pdf den alınmıştır.
  • Milli Eğitim Bakanlığı [MEB], (2012). Ortaokul ve İmam Hatip Ortaokulu Matematik Uygulamaları Ⅱ. Dönem Öğretmenler İçin Öğretim Materyali. Ankara.
  • OECD. (2003a). Literacy skills for the world of tomorrow. Further results from PISA 2000. Paris: OECD. Prakitipong, N., & Nakamura, S. (2006). Analysis of mathematics performance of grade five students in Thailand using Newman procedure. Journal of International Cooperation in Education, 9(1), 111–122.
  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: the disasters of “well-taught” mathematics courses. Educational Psychologist, 23, 145-166.
  • Sepeng, P. (2013). Use of unrealistic contexts and meaning in word problem solving: a case of second language learners in Township schools. International Journal of Research in Mathematics, 1(1), 8–14.
  • Singh. P, Rahman, A.A. & Hoon, T.C. 2010. The Newman Procedure For Analyzing Primary Four Pupils Errors On Written Mathematical Tasks: A Malaysian Perspective. Procedia Social and Behavioral Sciences, 8, 264-271.
  • Van den Heuvel-Panhuizen, M. (1996). Assessment and Realistic Mathematics Education. Utrecht: CD-β Press, Center for Science and Mathematics Education
  • Van den Heuvel-Panhuizen, M. (2005). The role of context in assessment problems in mathematics. For the Learning of Mathematics, 25(2), 2-9, and 23.
  • Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 273-294.
  • Wijaya, A., Van den Heuvel-Panhuizen, M., Doorman, M., & Robitzsch, A. (2014). Difficulties in solving context-based PISA mathematics tasks: An analysis of students’ errors. The Mathematics Enthusiast, 11(3), 555–584. Wood, D. (1988). How children think and learn. Oxford: Blackwell. (cited by Elbers, 1992).
  • Yıldırım, A., ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.

Investigation of the Challenges of Seventh Grade Students in Solving Mathematics Literacy Questions

Yıl 2020, Cilt: 3 Sayı: 2, 98 - 112, 15.05.2020

Öz

The aim of this study is to determine the difficulties faced by students at three different levels in the process of solving mathematics literacy questions and what clues students need to overcome these difficulties. In this study, semi-structured interview techniques, which is a qualitative data collection technique, was used. The sample of the study consists of 9 students in seventh grade in a public school. According to the Mathematics Literacy Test and the previous semester average of mathematics, three different level groups were formed as "low", "medium" and "high". According to the findings obtained from the interviews, it was observed that low-level students had difficulty in understanding mathematical literacy questions, and that the teacher was able to solve some questions, even if only a little, after the warning about past issues. It was determined that middle level students generally understood the question but could not express it mathematically, and as a result of the teacher's simple clues, they were able to solve some more questions than low level students. The High-level students were been seen able to solve math literacy questions more than students of low and medium level.


An Erratum to this article was published on 15 September 2020. https://dergipark.org.tr/en/pub/fmgted/issue/60204/873813 

Kaynakça

  • Altun, M., (2011). Eğitim Fakülteleri ve Lise Matematik Öğretmenleri İçin Liselerde Matematik Öğretimi, Alfa Aktüel, Bursa.
  • Beswick, K. (2011). Puttıng context ın context: an examınatıon of the evıdence for the benefıts of ‘contextualısed’ tasks, International Journal of Science and Mathematics Education, 9: 367-390.
  • Boaler, J. (1993a). Encouraging transfer of ‘school’ mathematics to the ‘real world’ through the integration of process and content, context and culture. Educational Studies in Mathematics, 25(4), 341-373.
  • Boaler, J. (1993b). The role of contexts in the mathematics classroom: Do they make mathematics more real? For the Learning of Mathematics, 13(2), 12–17.
  • Boaler, J. (1994). When do girls prefer football to fashion? An analysis of female underachievement in relation to "realistic" mathematics contexts, British Educational Research Journal 20, 551-564.
  • Borasi, R..(1986). On the nature of problems. Educational Studies in Mathematics, 17, 125 41.
  • Borromeo Ferri, R. (2007). Personal experiences and extra-mathematical knowledge as an influence factor on modelling routes of pupils. Paper presented at CERME 5: Fifth Conference of the European Society for Research in Mathematics Education, 2007 in Larnaca, Cyprus.
  • Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62(2), 211–230.
  • Clarkson, P. C., Campus, M. (1991). Language comprehension errors: A further investigation. Mathematics Education Research Journal, 3(2), 24-33.
  • Clements, M. A. (1980). Analyzing children’s errors on written mathematical task. Educational Studies in Mathematics, 11(1), 1-21.
  • Cooper,B . (1992). Testing National Curriculum mathematicss: one critical Comments on the treatment of 'real' contextsf or mathematics, The Curriculum Journal 3(3), 231-243.
  • Cooper, B. & Harries, T. (2002). Children’s responses to contrasting ‘realistic’ mathematics problems: Just how realistic are children ready to be? Educational Studies in Mathematics, 49, 1–23.
  • De Lange, J. (1995). Assessment: No change without problems. In T. A. Romberg (Ed.), Reform in school mathematics (pp. 87–172). Albany: SUNY Press.
  • Ellerton, N. F. & Clements, M. A. (1996). Newman error analysis. A comparative study involving Year 7 students in Malaysia and Australia. In P. C. Clarkson (Ed.), Technology and mathematics education (pp. 186–193). Melbourne: Mathematics Education Research Group of Australasia.
  • Gravemeijer, K. (1994) Developing Realistic Mathematics Education, Utrecht, The Netherlands,C D-B Press/FreudenthaI ln stitute.
  • Gravemeijer, K.P.E. & Doorman, L.M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), pp. 111-129.
  • Greer,B . (1993). The mathematical modeling perspective on wor(l)d problems. Journal of Mathematical Behavior 12, 239-250.
  • Jurdak, M. E. (2006). Contrasting perspectives and performance of high school students on problem solving in real world situated, and school contexts. Educational Studies in Mathematics, 63, 283–301.
  • Mack, N. (1993). Learning ational numbers with understanding the case mathematics more real? For the Learning of Mathematics, 13(2), 12–17.
  • Milli Eğitim Bakanlığı [MEB], (2006). Pisa 2006 Ulusal Nihai Raporu. http://pisa.meb.gov.tr/wp-content/uploads/2013/07/PISA2006-Ulusal-Nihai-Rapor.pdf den alınmıştır.
  • Milli Eğitim Bakanlığı [MEB], (2012). Ortaokul ve İmam Hatip Ortaokulu Matematik Uygulamaları Ⅱ. Dönem Öğretmenler İçin Öğretim Materyali. Ankara.
  • OECD. (2003a). Literacy skills for the world of tomorrow. Further results from PISA 2000. Paris: OECD. Prakitipong, N., & Nakamura, S. (2006). Analysis of mathematics performance of grade five students in Thailand using Newman procedure. Journal of International Cooperation in Education, 9(1), 111–122.
  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: the disasters of “well-taught” mathematics courses. Educational Psychologist, 23, 145-166.
  • Sepeng, P. (2013). Use of unrealistic contexts and meaning in word problem solving: a case of second language learners in Township schools. International Journal of Research in Mathematics, 1(1), 8–14.
  • Singh. P, Rahman, A.A. & Hoon, T.C. 2010. The Newman Procedure For Analyzing Primary Four Pupils Errors On Written Mathematical Tasks: A Malaysian Perspective. Procedia Social and Behavioral Sciences, 8, 264-271.
  • Van den Heuvel-Panhuizen, M. (1996). Assessment and Realistic Mathematics Education. Utrecht: CD-β Press, Center for Science and Mathematics Education
  • Van den Heuvel-Panhuizen, M. (2005). The role of context in assessment problems in mathematics. For the Learning of Mathematics, 25(2), 2-9, and 23.
  • Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 273-294.
  • Wijaya, A., Van den Heuvel-Panhuizen, M., Doorman, M., & Robitzsch, A. (2014). Difficulties in solving context-based PISA mathematics tasks: An analysis of students’ errors. The Mathematics Enthusiast, 11(3), 555–584. Wood, D. (1988). How children think and learn. Oxford: Blackwell. (cited by Elbers, 1992).
  • Yıldırım, A., ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Hasan Yıldız 0000-0003-4540-9830

Ridvan Ezentaş 0000-0001-8619-8334

Yayımlanma Tarihi 15 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Yıldız, H., & Ezentaş, R. (2020). Yedinci Sınıf Öğrencilerinin Matematik Okuryazarlığı Sorularının Çözümünde Karşılaştıkları Zorlukların İncelenmesi. Fen Matematik Girişimcilik Ve Teknoloji Eğitimi Dergisi, 3(2), 98-112.