Derleme
BibTex RIS Kaynak Göster

Conventional and Novel Methods for Extraction of Bioactive Compounds from Plant Materials

Yıl 2023, , 50 - 58, 28.09.2023
https://doi.org/10.5152/FSER.2023.23008

Öz

The extraction method, one of the oldest known chemical processes, the first and most important step in the isolation and purification of bioactive compounds from plant material. Bioactive compounds are secondary metabolites found in the roots, stems, leaves, flowers, and stems of plants. These metabolites are produced during the life cycle to help plants survive and overcome natural barriers. Bioactive components include terpenoids, alkaloids, nitrogen-containing compounds, organosulfur compounds, and polyphenols (phenolic acids, flavonoids, stilbenes, lignans, coumarins, and tannins). For the extraction of bioactive compounds from plant tissues, an appropriate extraction technique should be used that balances product quality, process efficiency, production costs, and environmentally friendly methods. To date, many techniques have been developed to obtain bioactive components. Among these techniques, conventional extraction methods (Soxhlet extraction, distillation, maceration, and infusion) are widely used in the food industry. Although these conventional techniques have been used successfully in the extraction of bioactive compounds, there are some disadvantages, such as the difference in equipment used in the techniques, time-consuming and costly methods, the need for organic solvents that harm the environment, and the potential for heat-sensitive bioactive components to be damaged. Therefore, recently, new green extraction technologies have been developed to reduce organic solvent consumption and extraction time. Among these techniques, there are some promising extraction techniques, such as microwave-assisted extraction, ultrasonic-assisted extraction, supercritical fluid extraction, and enzyme-assisted extraction. The present review is designed to give information about the different traditional and innovative techniques used in the extraction of bioactive compounds from plant materials and to examine the advantages and disadvantages of these techniques and their potential for use in the food industry.

Kaynakça

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.
  • Bui, T. B. C., Kokawa, M., Tran, T. T., Nosaki, S., Miura, K., & Kitamura, Y. (2022). Simultaneous stone-milling and extraction enables efficient one-step extraction of hard plant materials. Innovative Food Science and Emerging Technologies, 80, 103096.
  • Chan, C. H., Yusoff, R., Ngoh, G. C., & Kung, F. W. L. (2011). Microwaveassisted extractions of active ingredients from plants. Journal of Chromatography. A, 1218(37), 6213–6225.
  • Cheng, X., Bi, L., Zhao, Z., & Chen, Y. (2015). Advances in Enzyme Assisted Extraction of Natural Products (P. Yarlagadda, Ed.). 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Curran Associates, Inc.
  • Cravotto, G., & Binello, A. (2016). Low-frequency, high-power ultrasoundassisted food component extraction. In Innovative food processing technologies: Extraction, separation, component modification and process intensification (pp. 3–29). Elsevier Inc.
  • Dias, A. L. B., de Aguiar, A. C., & Rostagno, M. A. (2021). Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrasonics Sonochemistry, 74, 105584.
  • Flores, D. C. B., Boeira, C. P., Weis, G. C. C., de Oliveira Mello, R., Reis, F. L., Morandini, L. M. B., Morel, A. F., dos Santos, D., de Moraes Flores, E. M., Záchia, R. A., Nogueira-Librelotto, D. R., Rolim, C. M. B., & da Rosa, C. S. (2023). Extraction of antioxidant and antimicrobial compounds from Inga marginata Willd bark and pulp using different extraction techniques and phytochemical characterization. Innovative Food Science and Emerging Technologies, 83, 103244.
  • Fu, J., Zhang, L. L., Li, W., Zhang, Y., Zhang, Y., Liu, F., & Zou, L. (2022). Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chemistry, 367, 130697.
  • Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable seaweed technologies: Cultivation, biorefinery, and applications (pp. 171–189). Elsevier.
  • Harbourne, N., Marete, E., Jacquie, J. C., & O’Riordan, D. (2013). Conventional extraction techniques for phytochemicals. (B. K. , Tiwari, N. P.,Brunton, & C. S. Brennan, Eds.; First Edition). John, Wiley & Sons, Ltd.
  • Hasanov, J., Salikhov, S., & Oshchepkova, Y. (2023). Techno-economic evaluation of supercritical fluid extraction of flaxseed oil. Journal of Supercritical Fluids, 194, 105839.
  • Hedayati, S., Niakousari, M., Babajafari, S., & Mazloomi, S. M. (2021). Ultrasound-assisted extraction of mucilaginous seed hydrocolloids: Physicochemical properties and food applications. Trends in Food Science and Technology, 118, 356–361.
  • Jha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science and Technology, 119, 579–591.
  • Kanitkar, A. V. (2010). Parameterization of micr ameterization of microwave assisted oil extr e assisted oil extraction and its action and its transesterification to biodiesel. Louisiana State University.
  • Krakowska-Sieprawska, A., Rafińska, K., Walczak-Skierska, J., Kiełbasa, A., & Buszewski, B. (2021). Promising green technology in obtaining functional plant preparations: Combined enzyme-assisted supercritical fluid extraction of flavonoids isolation from Medicago sativa leaves. Materials, 14(11), 2724.
  • Lavilla, I., & Bendicho, C. (2017). Fundamentals of ultrasound-assisted extraction. In Water extraction of bioactive compounds: From plants to drug development (pp. 291–316). Elsevier.
  • Lee, T. H., Lee, C. H., Ong, P. Y., Wong, S. L., Hamdan, N., Ya’akob, H., Azmi, N. A., Khoo, S. C., Zakaria, Z. A., & Cheng, K. K. (2022). Comparison of extraction methods of phytochemical compounds from white flower variety of Melastoma malabathricum. South African Journal of Botany, 148, 170–179.
  • Lim, J. R., Chua, L. S., & Mustaffa, A. A. (2022). Ionic liquids as green solvent and their applications in bioactive compounds extraction from plants. Process Biochemistry, 122, 292–306.
  • López-Bascón-Bascon, M. A., & Luque de Castro, M. D. (2019). Soxhlet extraction. In Liquid-phase extraction (pp. 327–354). Elsevier.
  • Łubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. In Applied Sciences (Switzerland) (Vol. 12, Issue 7). MDPI.
  • Luque de Castro, M. D., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography. A, 1217(16), 2383–2389.
  • Luque-García, J. L., & Luque De Castro, M. D. (2003). Where is microwavebased analytical equipment for solid sample pre-treatment going? TrAC Trends in Analytical Chemistry, 22(2), 90–98.
  • Machmudah, S., Wahyudiono, Kanda, H., & Goto, M. (2020). Emerging seaweed extraction techniques: Supercritical fluid extraction. In Sustainable seaweed technologies: Cultivation, biorefinery, and applications (pp. 257–286). Elsevier.
  • Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47.
  • Mirzadeh, M., Arianejad, M. R., & Khedmat, L. (2020). Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers, 229, 115421.
  • More, P. R., Jambrak, A. R., & Arya, S. S. (2022). Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends in Food Science and Technology, 128, 296–315.
  • Oprescu, E. E., Enascuta, C. E., Radu, E., Ciltea-Udrescu, M., & Lavric, V. (2022). Does the ultrasonic field improve the extraction productivity compared to classical methods – Maceration and reflux distillation? Chemical Engineering and Processing – Process Intensification, 179, 109082.
  • Orsat, V., & Routray, W. (2017). Microwave-assisted extraction of flavonoids. In Water extraction of bioactive compounds: From plants to drug development (pp. 221–244). Elsevier.
  • Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC Trends in Analytical Chemistry, 43, 84–99.
  • Pontillo, A. R. N., Papakosta-Tsigkri, L., Lymperopoulou, T., Mamma, D., Kekos, D., & Detsi, A. (2021). Conventional and enzyme-assisted extraction of rosemary leaves (Rosmarinus officinalis l.): Toward a greener approach to high added-value extracts. Applied Sciences, 11(8).
  • Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37–44.
  • Roohinejad, S., Koubaa, M., Barba, F. J., Greiner, R., Orlien, V., & Lebovka, N. I. (2016). Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends in Food Science and Technology, 52, 98–108.
  • Rutkowska, M., Namieśnik, J., & Konieczka, P. (2017). Ultrasound-assisted extraction. In The application of green solvents in separation processes (pp. 301–324). Elsevier Inc.
  • Seidel, V., Sarker, S. D., Latif, Z., & Gray, A. I. (2008). Initial and bulk extraction. In. In Methods in Biotechnology (Vol. 20).
  • Siddiqui, H., Sultan, Z., Yousuf, O., Malik, M., & Younis, K. (2023). A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioactive Carbohydrates and Dietary Fibre, 30, 100356.
  • Silva, L. V., Nelson, D. L., Drummond, M. F. B., Dufossé, L., & Glória, M. B. A. (2005). Comparison of hydrodistillation methods for the deodorization of turmeric. Food Research International, 38(8–9), 1087–1096.
  • Singh, S., Verma, D. K., Thakur, M., Tripathy, S., Patel, A. R., Shah, N., Utama, G. L., Srivastav, P. P., Benavente-Valdés, J. R., Chávez-González, M. L., & Aguilar, C. N. (2021). Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Research International, 150(A), 110746.
  • Tiwari, B. K., Brunton, N. P., & Brennan, C. S. (Eds). (2013). Handbook of plant food phytochemicals: Sources, stability and extraction (1st ed.). Wiley Blackwell Publishing.
  • Topdaş, E. F., & Şengül, M. (2019). Katı-sıvı Ekstraksiyonunda kullanılan modern Teknikler ve bu Teknikler arasında ultrason Yardımlı Ekstraksiyonun yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 201–216.
  • Tsukui, A., Santos Júnior, H. M., Oigman, S. S., De Souza, R. O. M. A., Bizzo, H. R., & Rezende, C. M. (2014). Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC. Food Chemistry, 164, 266–271.
  • Walker, T. H., Patel, P., & Cantrell, K. (2007). Supercritical fluid extraction and other technologies for extraction of high-value food processing co-products. In Handbook of waste management and co-product recovery in food processing (Vol. 1, pp. 217–257). Elsevier Inc.
  • Wang, Z., Mei, X., Chen, X., Rao, S., Ju, T., Li, J., & Yang, Z. (2023). Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. LWT, 173, 114337.
  • Yang, Y., Hassan, S. H. A., Awasthi, M. K., Gajendran, B., Sharma, M., Ji, M. K., & Salama, E. S. (2023). The recent progress on the bioactive compounds from algal biomass for human health applications. Food Bioscience, 51, 102267.
  • Yusoff, I. M., Mat Taher, Z., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268.
  • Zygler, A., Słomińska, M., & Namieśnik, J. (2012). Soxhlet extraction and new developments such as Soxtec. Comprehensive Sampling and Sample Preparation, 65–82.

Bitkisel Materyallerdeki Biyoaktif Bileşenlerin Ekstraksiyonunda Kullanılan Konvansiyonel ve Yeni Nesil Ekstraksiyon Yöntemleri

Yıl 2023, , 50 - 58, 28.09.2023
https://doi.org/10.5152/FSER.2023.23008

Öz

Ekstraksiyon prosesi bilinen en eski kimyasal işlemlerden biridir ve biyoaktif bileşiklerin bitki materyalinden izolasyonu ve saflaştırılmasındaki ilk ve en önemli adımdır. Biyoaktif bileşikler bitkilerin kök, gövde, yaprak, çiçek ve saplarında bulunan sekonder metabolitlerdir. Bu metabolitler, bitkilerin hayatta kalmasına ve doğal engellerin üstesinden gelmesine yardımcı olmak için gelişim döngüsü sırasında üretilirler. Biyoaktif bileşenler arasında terpenoidler, alkoloidler, nitrojen içeren bileşikler, organosülfür bileşikleri ve polifenoller (fenolik asitler, flavonoidler, stilbenler, lignanlar, kumarinler, tanenler) yer alır. Bitki dokularından biyoaktif bileşiklerin ekstraksiyonu için ürün kalitesini, proses verimliliğini, üretim maliyetlerini ve çevresel olarak kabul edilebilir yöntemleri dengeleyen uygun bir ekstraksiyon tekniği kullanılmalıdır. Bugüne kadar biyoaktif bileşenleri elde etmek için birçok teknik geliştirilmiştir. Bu teknikler arasında konvansiyonel ekstraksiyon yöntemleri (Soxhlet ekstraksiyonu, distilasyon, maserasyon ve infüzyon) gıda endüstrisinde yaygın olarak kullanılmaktadır. Konvansiyonel bu teknikler biyoaktif bileşiklerin ekstraksiyonunda başarılı bir şekilde kullanılmasına rağmen, bu yöntemlerde kullanılan ekipmanların birbirinden farklı olması, yöntemlerin zaman alıcı, zahmetli, maliyetli olmaları ve çevreye zararlı organik çözücüler kullanılma gerekliliği ve ısıya duyarlı biyoaktif bileşenlerin bu tekniklerle zarar görmesi söz konusudur. Dolayısıyla son zamanlarda organik çözücü tüketimini ve ekstraksiyon süresini azaltmak için yeni yeşil ekstraksiyon teknolojileri geliştirilmiş ve bu amaçla mikrodalga destekli ekstraksiyon, ultrasonik destekli ekstraksiyon, enzim-destekli ekstraksiyon, süperkritik akışkan ekstraksiyonu gibi daha verimli ekstraksiyon yöntemleri kullanılmaya başlanmıştır. Bu derleme, bitki materyallerinden biyoaktif bileşiklerin ekstraksiyonunda kullanılan farklı geleneksel ve yenilikçi teknikler hakkında bilgi vermek ve bu tekniklerin avantaj ve dezavantajlarını ve gıda endüstrisinde kullanım potansiyellerini incelemek için tasarlanmıştır.

Kaynakça

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.
  • Bui, T. B. C., Kokawa, M., Tran, T. T., Nosaki, S., Miura, K., & Kitamura, Y. (2022). Simultaneous stone-milling and extraction enables efficient one-step extraction of hard plant materials. Innovative Food Science and Emerging Technologies, 80, 103096.
  • Chan, C. H., Yusoff, R., Ngoh, G. C., & Kung, F. W. L. (2011). Microwaveassisted extractions of active ingredients from plants. Journal of Chromatography. A, 1218(37), 6213–6225.
  • Cheng, X., Bi, L., Zhao, Z., & Chen, Y. (2015). Advances in Enzyme Assisted Extraction of Natural Products (P. Yarlagadda, Ed.). 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Curran Associates, Inc.
  • Cravotto, G., & Binello, A. (2016). Low-frequency, high-power ultrasoundassisted food component extraction. In Innovative food processing technologies: Extraction, separation, component modification and process intensification (pp. 3–29). Elsevier Inc.
  • Dias, A. L. B., de Aguiar, A. C., & Rostagno, M. A. (2021). Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrasonics Sonochemistry, 74, 105584.
  • Flores, D. C. B., Boeira, C. P., Weis, G. C. C., de Oliveira Mello, R., Reis, F. L., Morandini, L. M. B., Morel, A. F., dos Santos, D., de Moraes Flores, E. M., Záchia, R. A., Nogueira-Librelotto, D. R., Rolim, C. M. B., & da Rosa, C. S. (2023). Extraction of antioxidant and antimicrobial compounds from Inga marginata Willd bark and pulp using different extraction techniques and phytochemical characterization. Innovative Food Science and Emerging Technologies, 83, 103244.
  • Fu, J., Zhang, L. L., Li, W., Zhang, Y., Zhang, Y., Liu, F., & Zou, L. (2022). Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chemistry, 367, 130697.
  • Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable seaweed technologies: Cultivation, biorefinery, and applications (pp. 171–189). Elsevier.
  • Harbourne, N., Marete, E., Jacquie, J. C., & O’Riordan, D. (2013). Conventional extraction techniques for phytochemicals. (B. K. , Tiwari, N. P.,Brunton, & C. S. Brennan, Eds.; First Edition). John, Wiley & Sons, Ltd.
  • Hasanov, J., Salikhov, S., & Oshchepkova, Y. (2023). Techno-economic evaluation of supercritical fluid extraction of flaxseed oil. Journal of Supercritical Fluids, 194, 105839.
  • Hedayati, S., Niakousari, M., Babajafari, S., & Mazloomi, S. M. (2021). Ultrasound-assisted extraction of mucilaginous seed hydrocolloids: Physicochemical properties and food applications. Trends in Food Science and Technology, 118, 356–361.
  • Jha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science and Technology, 119, 579–591.
  • Kanitkar, A. V. (2010). Parameterization of micr ameterization of microwave assisted oil extr e assisted oil extraction and its action and its transesterification to biodiesel. Louisiana State University.
  • Krakowska-Sieprawska, A., Rafińska, K., Walczak-Skierska, J., Kiełbasa, A., & Buszewski, B. (2021). Promising green technology in obtaining functional plant preparations: Combined enzyme-assisted supercritical fluid extraction of flavonoids isolation from Medicago sativa leaves. Materials, 14(11), 2724.
  • Lavilla, I., & Bendicho, C. (2017). Fundamentals of ultrasound-assisted extraction. In Water extraction of bioactive compounds: From plants to drug development (pp. 291–316). Elsevier.
  • Lee, T. H., Lee, C. H., Ong, P. Y., Wong, S. L., Hamdan, N., Ya’akob, H., Azmi, N. A., Khoo, S. C., Zakaria, Z. A., & Cheng, K. K. (2022). Comparison of extraction methods of phytochemical compounds from white flower variety of Melastoma malabathricum. South African Journal of Botany, 148, 170–179.
  • Lim, J. R., Chua, L. S., & Mustaffa, A. A. (2022). Ionic liquids as green solvent and their applications in bioactive compounds extraction from plants. Process Biochemistry, 122, 292–306.
  • López-Bascón-Bascon, M. A., & Luque de Castro, M. D. (2019). Soxhlet extraction. In Liquid-phase extraction (pp. 327–354). Elsevier.
  • Łubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. In Applied Sciences (Switzerland) (Vol. 12, Issue 7). MDPI.
  • Luque de Castro, M. D., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography. A, 1217(16), 2383–2389.
  • Luque-García, J. L., & Luque De Castro, M. D. (2003). Where is microwavebased analytical equipment for solid sample pre-treatment going? TrAC Trends in Analytical Chemistry, 22(2), 90–98.
  • Machmudah, S., Wahyudiono, Kanda, H., & Goto, M. (2020). Emerging seaweed extraction techniques: Supercritical fluid extraction. In Sustainable seaweed technologies: Cultivation, biorefinery, and applications (pp. 257–286). Elsevier.
  • Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47.
  • Mirzadeh, M., Arianejad, M. R., & Khedmat, L. (2020). Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers, 229, 115421.
  • More, P. R., Jambrak, A. R., & Arya, S. S. (2022). Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends in Food Science and Technology, 128, 296–315.
  • Oprescu, E. E., Enascuta, C. E., Radu, E., Ciltea-Udrescu, M., & Lavric, V. (2022). Does the ultrasonic field improve the extraction productivity compared to classical methods – Maceration and reflux distillation? Chemical Engineering and Processing – Process Intensification, 179, 109082.
  • Orsat, V., & Routray, W. (2017). Microwave-assisted extraction of flavonoids. In Water extraction of bioactive compounds: From plants to drug development (pp. 221–244). Elsevier.
  • Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC Trends in Analytical Chemistry, 43, 84–99.
  • Pontillo, A. R. N., Papakosta-Tsigkri, L., Lymperopoulou, T., Mamma, D., Kekos, D., & Detsi, A. (2021). Conventional and enzyme-assisted extraction of rosemary leaves (Rosmarinus officinalis l.): Toward a greener approach to high added-value extracts. Applied Sciences, 11(8).
  • Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37–44.
  • Roohinejad, S., Koubaa, M., Barba, F. J., Greiner, R., Orlien, V., & Lebovka, N. I. (2016). Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends in Food Science and Technology, 52, 98–108.
  • Rutkowska, M., Namieśnik, J., & Konieczka, P. (2017). Ultrasound-assisted extraction. In The application of green solvents in separation processes (pp. 301–324). Elsevier Inc.
  • Seidel, V., Sarker, S. D., Latif, Z., & Gray, A. I. (2008). Initial and bulk extraction. In. In Methods in Biotechnology (Vol. 20).
  • Siddiqui, H., Sultan, Z., Yousuf, O., Malik, M., & Younis, K. (2023). A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioactive Carbohydrates and Dietary Fibre, 30, 100356.
  • Silva, L. V., Nelson, D. L., Drummond, M. F. B., Dufossé, L., & Glória, M. B. A. (2005). Comparison of hydrodistillation methods for the deodorization of turmeric. Food Research International, 38(8–9), 1087–1096.
  • Singh, S., Verma, D. K., Thakur, M., Tripathy, S., Patel, A. R., Shah, N., Utama, G. L., Srivastav, P. P., Benavente-Valdés, J. R., Chávez-González, M. L., & Aguilar, C. N. (2021). Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Research International, 150(A), 110746.
  • Tiwari, B. K., Brunton, N. P., & Brennan, C. S. (Eds). (2013). Handbook of plant food phytochemicals: Sources, stability and extraction (1st ed.). Wiley Blackwell Publishing.
  • Topdaş, E. F., & Şengül, M. (2019). Katı-sıvı Ekstraksiyonunda kullanılan modern Teknikler ve bu Teknikler arasında ultrason Yardımlı Ekstraksiyonun yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 201–216.
  • Tsukui, A., Santos Júnior, H. M., Oigman, S. S., De Souza, R. O. M. A., Bizzo, H. R., & Rezende, C. M. (2014). Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC. Food Chemistry, 164, 266–271.
  • Walker, T. H., Patel, P., & Cantrell, K. (2007). Supercritical fluid extraction and other technologies for extraction of high-value food processing co-products. In Handbook of waste management and co-product recovery in food processing (Vol. 1, pp. 217–257). Elsevier Inc.
  • Wang, Z., Mei, X., Chen, X., Rao, S., Ju, T., Li, J., & Yang, Z. (2023). Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. LWT, 173, 114337.
  • Yang, Y., Hassan, S. H. A., Awasthi, M. K., Gajendran, B., Sharma, M., Ji, M. K., & Salama, E. S. (2023). The recent progress on the bioactive compounds from algal biomass for human health applications. Food Bioscience, 51, 102267.
  • Yusoff, I. M., Mat Taher, Z., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157, 111268.
  • Zygler, A., Słomińska, M., & Namieśnik, J. (2012). Soxhlet extraction and new developments such as Soxtec. Comprehensive Sampling and Sample Preparation, 65–82.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimleri (Diğer)
Bölüm Derlemeler
Yazarlar

Zeynep Gizem Taşkıran Bu kişi benim 0009-0007-7146-7424

Aleyna Dündar Bu kişi benim 0009-0007-9530-4427

Hilal Yıldız Bu kişi benim 0000-0002-7966-455X

Yayımlanma Tarihi 28 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Taşkıran, Z. G., Dündar, A., & Yıldız, H. (2023). Bitkisel Materyallerdeki Biyoaktif Bileşenlerin Ekstraksiyonunda Kullanılan Konvansiyonel ve Yeni Nesil Ekstraksiyon Yöntemleri. Gıda Bilimi Ve Mühendisliği Araştırmaları, 2(2), 50-58. https://doi.org/10.5152/FSER.2023.23008

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License
29929