Araştırma Makalesi
BibTex RIS Kaynak Göster

Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması

Yıl 2024, , 621 - 639, 30.09.2024
https://doi.org/10.35234/fumbd.1416567

Öz

Bu çalışmada, döner ters sarkaç sistemi hareketli koluyla sınırlı bir bölge içinde, salınımı kontrol edilerek ve sarkaç enerjisi artırılarak, kararlı denge noktasından kararsız denge noktasına çıkarılması hedeflenmektedir. Döner ters sarkaç sisteminin doğrusal olmayan modeli ve denge noktalarındaki doğrusal modelleri verildikten sonra sarkaç yukarı yükseltme algoritması tanıtılmaktadır. Yukarı yükseltme algoritması, sarkaç salınırken belli noktalarda kol yardımıyla sarkaca enerji yüklemesine dayanmaktadır. Burada kol ivmelendirilmesi sabit bir ivme ile hareket ettirilmektedir. Yukarı yükseltme işlemindeki algoritma, sarkacın hızının en fazla olduğu yere yani kararlı denge noktasına ilerlerken ve periyodunu tamamlarken devreye girmektedir. Bu analizler hesaplanmış sınırlar dikkate alınarak yapılmaktadır. Sarkacın yukarı yükselmesi gerçekleştiğinde doğrusal model üzerinden elde edilmiş temel bir tam durum geri beslemeli kontrolcü devreye girmektedir ve sarkacı kararsız denge noktasında tutmaktadır. Böylece, anahtarlamalı bir kontrol yapısı elde edilmektedir. Önerilen kontrol algoritmasının doğrulaması için önerilen algoritma bir döner sarkacı üzerinde gerçek zamanlı olarak test edilmiştir. Farklı kol ivmelendirme değerleri ile elde edilen karşılaştırmalı sonuçlar sunulmuştur. Kol ivmesi ±32 rad/s2’den ±64 rad/s2’ye çıkarıldığında sarkacın yukarı yükselme süresi yaklaşık 9 s’den 5 s’ye düşmektedir. Bu sonuçlar, önerilen algoritmanın deneysel başarısını göstermektedir.

Kaynakça

  • Shah I, Rehman FU. Smooth second order sliding mode control of a class of underactuated mechanical systems. IEEE Access, 2018; 6: 7759-7771.
  • Krafes S, Chalh Z, Saka A. A review on the control of second order underactuated mechanical systems. Complexity 2018, 1-17.
  • Adıgüzel F, Yalçın Y. Discrete-time backstepping control with nonlinear adaptive disturbance attenuation for the inverted-pendulum system. Trans Inst Meas Control 2021; 43(5): 1068-1076.
  • Adıgüzel F, Yalçın Y. Backstepping control for a class of underactuated nonlinear mechanical systems with a novel coordinate transformation in the discrete-time setting. Proc Inst Mech Eng, Part I: J Syst Control Eng 2022; 236(6): 1211-1223.
  • Zhong W, Rock H. Energy and passivity based control of the double inverted pendulum on a cart. In: Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01); 07 September 2001; Mexico City, Mexico. New York, NY, USA: IEEE. pp. 896-901.
  • Krishen J, Becerra VM. Efficient Fuzzy Control of a Rotary Inverted Pendulum Based on LQR Mapping, In: IEEE International Symposium on Intelligent Control; 04-06 October 2006; Munich, Germany. New York, NY, USA: IEEE. pp. 2701-2706.
  • Craig K, Awtar S. Inverted Pendulum Systems: Rotary And Arm-Driven A Mechatronic System Design Case Study, Mechatronics 2001; 12: 357-370.
  • Acosta JA. Furuta's Pendulum: A conservative nonlinear model for theory and practise. Math Probl Eng 2010; 742894.
  • Jain A, Sharma A, Jately V, Azzopardi B, Choudhury S. Real-time swing-up control of non-linear inverted pendulum using Lyapunov based optimized fuzzy logic control. IEEE Access 2021; 9: 50715-50726.
  • Antonio-Cruz M, Hernandez-Guzman VM, Merlo-Zapata CA, Marquez-Sanchez C. Nonlinear control with friction compensation to swing-up a Furuta pendulum. ISA Trans 2023; 139: 713-723.
  • Docekal T, Ozana S, Pal Singh A, Kawala-Sterniuk A. Closed-loop swing-up and stabilization of inverted pendulum by finite-horizon LQR applied in 2-DOF concept. Control and Cybern 2020; 49: 109-122.
  • Yang X, Zheng X. Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: Theory and experiments. IEEE Trans Ind Electron 2018; 65(9): 7229-7238.
  • Dwivedi P, Pandey S, Junghare AS. Stabilization of unstable equilibrium point of rotary inverted pendulum using fractional controller. J Franklin Inst 2017; 354(17): 7732-7766.
  • Türker T, Görgün H, Cansever G. Lyapunov's direct method for stabilization of the Furuta pendulum. Turk J Electr Eng. Comput Sci 2012; 20(1): 99-110.
  • Solis MA, Olivares M, Allende H. A switched control strategy for swing-up and state regulation for the rotary inverted pendulum. Stud Inform Control 2019; 28(1): 45-54.
  • Melba MP, Marimuthu NS. Minimum time swing up and stabilization of rotary inverted pendulum using pulse step control. Iran J Fuzzy Syst 2009; 6(3): 1-15.
  • Abdullah M, Amin AA, Iqbal S, Mahmood-ul-Hasan K. Swing up and stabilization control of rotary inverted pendulum based on energy balance, fuzzy logic, and LQR controllers. Meas Control 2021; 54(9-10): 1356-1370.
  • Gupta N, Dewan L. Trajectory tracking and balancing control of rotary inverted pendulum system using quasi-sliding mode control. Mechatron Syst Control 2022; 50(1): 201-231.
  • de Carvalho Junior A, Angelico BA, Justo JF, de Oliveira AM, da Silva Filho JI. Model reference control by recurrent neural network built with paraconsistent neurons for trajectory tracking of a rotary inverted pendulum. Appl Soft Comput 2023; 133: 109927.
  • Zeghlache S, Ghellab MZ, Djerioui A, Bouderah B, Benkhoris MF. Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults. Math Comput Simul 2023; 210: 207-234.
  • Åström KJ, Furuta K. Swinging up a pendulum by energy control. Automatica 2000; 36(2): 287-295.
  • Freidovich L, Shiriaev A, Gordillo F, Gómez-Estern F, Aracil J. Partial-energy-shaping control for orbital stabilization of high frequency oscillations of the Furuta pendulum. In: 2007 46th IEEE Conference on Decision and Control; 12-14 December 2007; New Orleans, LA, USA. New York, NY, USA: IEEE. pp. 4637-4642.
  • Gordillo F, Acosta JA, Aracil J. A new swing-up law for the Furuta pendulum, Int J Control 2003; 76; 836-844.
  • Tanaka S, Xin X, Yamasaki T. New results of energy-based swing-up control for rotational pendulum. IFAC Proceedings Volumes 2011; 44(1): 10673-10678.
  • Zhang Z, Suh CS. Underactuated Mechanical Systems- A Review of Control Design. Journal of Vibration Testing and System Dynamics 2022; 6(01): 21-51.
  • Hazem ZB, Bingül Z. Comprehensive review of different pendulum structures in engineering applications. IEEE Access 2023; 11: 42862-42880.
  • Hamza MF, Yap HJ, Choudhury IA, Isa AI, Zimit AY, Kumbasar T. Current development on using Rotary Inverted Pendulum as a benchmark for testing linear and nonlinear control algorithms. Mech Syst Signal Process 2019; 116: 347-369.
  • Nguyen NP, Oh H, Kim Y, Moon J. A nonlinear hybrid controller for swinging-up and stabilizing the rotary inverted pendulum. Nonlinear Dyn 2021; 104: 1117-1137.
  • Nguyen NP, Oh H, Kim Y, Moon J, Yang J, Chen WH. Fuzzy-based super-twisting sliding mode stabilization control for under-actuated rotary inverted pendulum systems. IEEE Access 2020; 8: 185079-185092.
  • Huang J, Zhang T, Fan Y, Sun JQ. Control of rotary inverted pendulum using model-free backstepping technique. IEEE Access 2019; 7: 96965-96973.
  • Mofid O, Alattas KA, Mobayen S, Vu MT, Bouteraa Y. Adaptive finite-time command-filtered backstepping sliding mode control for stabilization of a disturbed rotary-inverted-pendulum with experimental validation. J Vib Control 2023; 29(5-6): 1431-1446.
  • Fantoni I, Lozano R. Non-linear control for underactuated mechanical systems. 1st ed. London, UK: Springer Science & Business Media, 2002.
  • Moreno-Valenzuela J, Aguilar-Avelar C. Motion control of underactuated mechanical systems. 1st ed. Cham, Switzerland: Springer International Publishing, 2018.

Energy-Based Nonlinear Control Algorithm for Swing-Up of Underactuated Rotary Inverted Pendulum System and Its Experimental Verification

Yıl 2024, , 621 - 639, 30.09.2024
https://doi.org/10.35234/fumbd.1416567

Öz

This study aims to control the oscillation and increase the pendulum energy with the movable arm of the rotary inverted pendulum, swinging the pendulum up from a stable equilibrium point to an unstable equilibrium point in a restricted zone. After the nonlinear model of the rotary inverted pendulum system and the linear models at the equilibrium points are given, the pendulum swing-up algorithm is introduced. The swing-up algorithm is based on increasing energy into the pendulum with the help of an arm at certain points while the pendulum is swinging. At this point, the arm acceleration is moved by a constant acceleration. The algorithm of the swinging-up is activated when the pendulum completes its period and moves to the point of maximum speed where the stable equilibrium point. These analyses are made by taking calculated limits in these operations into account. When the pendulum swing-up is achieved, a classical full-state feedback controller obtained from the linear model comes into play and keeps the pendulum at the unstable equilibrium point. Thus, a switching control structure is obtained. To verify the proposed control algorithm, the proposed algorithm is carried out in real-time on a rotary inverted pendulum. The comparative results obtained with the different arm acceleration values are presented. When the arm acceleration is increased from ±32 rad/s^2 to ±64 rad/s^2, the pendulum swing up time decreases from approximately 9 sec to 5 sec. These results demonstrate the experimental success of the proposed algorithm.

Kaynakça

  • Shah I, Rehman FU. Smooth second order sliding mode control of a class of underactuated mechanical systems. IEEE Access, 2018; 6: 7759-7771.
  • Krafes S, Chalh Z, Saka A. A review on the control of second order underactuated mechanical systems. Complexity 2018, 1-17.
  • Adıgüzel F, Yalçın Y. Discrete-time backstepping control with nonlinear adaptive disturbance attenuation for the inverted-pendulum system. Trans Inst Meas Control 2021; 43(5): 1068-1076.
  • Adıgüzel F, Yalçın Y. Backstepping control for a class of underactuated nonlinear mechanical systems with a novel coordinate transformation in the discrete-time setting. Proc Inst Mech Eng, Part I: J Syst Control Eng 2022; 236(6): 1211-1223.
  • Zhong W, Rock H. Energy and passivity based control of the double inverted pendulum on a cart. In: Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01); 07 September 2001; Mexico City, Mexico. New York, NY, USA: IEEE. pp. 896-901.
  • Krishen J, Becerra VM. Efficient Fuzzy Control of a Rotary Inverted Pendulum Based on LQR Mapping, In: IEEE International Symposium on Intelligent Control; 04-06 October 2006; Munich, Germany. New York, NY, USA: IEEE. pp. 2701-2706.
  • Craig K, Awtar S. Inverted Pendulum Systems: Rotary And Arm-Driven A Mechatronic System Design Case Study, Mechatronics 2001; 12: 357-370.
  • Acosta JA. Furuta's Pendulum: A conservative nonlinear model for theory and practise. Math Probl Eng 2010; 742894.
  • Jain A, Sharma A, Jately V, Azzopardi B, Choudhury S. Real-time swing-up control of non-linear inverted pendulum using Lyapunov based optimized fuzzy logic control. IEEE Access 2021; 9: 50715-50726.
  • Antonio-Cruz M, Hernandez-Guzman VM, Merlo-Zapata CA, Marquez-Sanchez C. Nonlinear control with friction compensation to swing-up a Furuta pendulum. ISA Trans 2023; 139: 713-723.
  • Docekal T, Ozana S, Pal Singh A, Kawala-Sterniuk A. Closed-loop swing-up and stabilization of inverted pendulum by finite-horizon LQR applied in 2-DOF concept. Control and Cybern 2020; 49: 109-122.
  • Yang X, Zheng X. Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: Theory and experiments. IEEE Trans Ind Electron 2018; 65(9): 7229-7238.
  • Dwivedi P, Pandey S, Junghare AS. Stabilization of unstable equilibrium point of rotary inverted pendulum using fractional controller. J Franklin Inst 2017; 354(17): 7732-7766.
  • Türker T, Görgün H, Cansever G. Lyapunov's direct method for stabilization of the Furuta pendulum. Turk J Electr Eng. Comput Sci 2012; 20(1): 99-110.
  • Solis MA, Olivares M, Allende H. A switched control strategy for swing-up and state regulation for the rotary inverted pendulum. Stud Inform Control 2019; 28(1): 45-54.
  • Melba MP, Marimuthu NS. Minimum time swing up and stabilization of rotary inverted pendulum using pulse step control. Iran J Fuzzy Syst 2009; 6(3): 1-15.
  • Abdullah M, Amin AA, Iqbal S, Mahmood-ul-Hasan K. Swing up and stabilization control of rotary inverted pendulum based on energy balance, fuzzy logic, and LQR controllers. Meas Control 2021; 54(9-10): 1356-1370.
  • Gupta N, Dewan L. Trajectory tracking and balancing control of rotary inverted pendulum system using quasi-sliding mode control. Mechatron Syst Control 2022; 50(1): 201-231.
  • de Carvalho Junior A, Angelico BA, Justo JF, de Oliveira AM, da Silva Filho JI. Model reference control by recurrent neural network built with paraconsistent neurons for trajectory tracking of a rotary inverted pendulum. Appl Soft Comput 2023; 133: 109927.
  • Zeghlache S, Ghellab MZ, Djerioui A, Bouderah B, Benkhoris MF. Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults. Math Comput Simul 2023; 210: 207-234.
  • Åström KJ, Furuta K. Swinging up a pendulum by energy control. Automatica 2000; 36(2): 287-295.
  • Freidovich L, Shiriaev A, Gordillo F, Gómez-Estern F, Aracil J. Partial-energy-shaping control for orbital stabilization of high frequency oscillations of the Furuta pendulum. In: 2007 46th IEEE Conference on Decision and Control; 12-14 December 2007; New Orleans, LA, USA. New York, NY, USA: IEEE. pp. 4637-4642.
  • Gordillo F, Acosta JA, Aracil J. A new swing-up law for the Furuta pendulum, Int J Control 2003; 76; 836-844.
  • Tanaka S, Xin X, Yamasaki T. New results of energy-based swing-up control for rotational pendulum. IFAC Proceedings Volumes 2011; 44(1): 10673-10678.
  • Zhang Z, Suh CS. Underactuated Mechanical Systems- A Review of Control Design. Journal of Vibration Testing and System Dynamics 2022; 6(01): 21-51.
  • Hazem ZB, Bingül Z. Comprehensive review of different pendulum structures in engineering applications. IEEE Access 2023; 11: 42862-42880.
  • Hamza MF, Yap HJ, Choudhury IA, Isa AI, Zimit AY, Kumbasar T. Current development on using Rotary Inverted Pendulum as a benchmark for testing linear and nonlinear control algorithms. Mech Syst Signal Process 2019; 116: 347-369.
  • Nguyen NP, Oh H, Kim Y, Moon J. A nonlinear hybrid controller for swinging-up and stabilizing the rotary inverted pendulum. Nonlinear Dyn 2021; 104: 1117-1137.
  • Nguyen NP, Oh H, Kim Y, Moon J, Yang J, Chen WH. Fuzzy-based super-twisting sliding mode stabilization control for under-actuated rotary inverted pendulum systems. IEEE Access 2020; 8: 185079-185092.
  • Huang J, Zhang T, Fan Y, Sun JQ. Control of rotary inverted pendulum using model-free backstepping technique. IEEE Access 2019; 7: 96965-96973.
  • Mofid O, Alattas KA, Mobayen S, Vu MT, Bouteraa Y. Adaptive finite-time command-filtered backstepping sliding mode control for stabilization of a disturbed rotary-inverted-pendulum with experimental validation. J Vib Control 2023; 29(5-6): 1431-1446.
  • Fantoni I, Lozano R. Non-linear control for underactuated mechanical systems. 1st ed. London, UK: Springer Science & Business Media, 2002.
  • Moreno-Valenzuela J, Aguilar-Avelar C. Motion control of underactuated mechanical systems. 1st ed. Cham, Switzerland: Springer International Publishing, 2018.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kontrol Teorisi ve Uygulamaları, Kontrol Mühendisliği, Mekatronik Mühendisliği
Bölüm MBD
Yazarlar

Fatih Adıgüzel 0000-0002-2161-690X

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 8 Ocak 2024
Kabul Tarihi 12 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Adıgüzel, F. (2024). Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 621-639. https://doi.org/10.35234/fumbd.1416567
AMA Adıgüzel F. Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2024;36(2):621-639. doi:10.35234/fumbd.1416567
Chicago Adıgüzel, Fatih. “Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması Ve Deneysel Doğrulaması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 2 (Eylül 2024): 621-39. https://doi.org/10.35234/fumbd.1416567.
EndNote Adıgüzel F (01 Eylül 2024) Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 621–639.
IEEE F. Adıgüzel, “Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, ss. 621–639, 2024, doi: 10.35234/fumbd.1416567.
ISNAD Adıgüzel, Fatih. “Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması Ve Deneysel Doğrulaması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (Eylül 2024), 621-639. https://doi.org/10.35234/fumbd.1416567.
JAMA Adıgüzel F. Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:621–639.
MLA Adıgüzel, Fatih. “Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması Ve Deneysel Doğrulaması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, 2024, ss. 621-39, doi:10.35234/fumbd.1416567.
Vancouver Adıgüzel F. Eksik Tahrikli Döner Ters Sarkaç Sisteminin Yukarı Yükseltilmesi için Enerji Tabanlı Doğrusal Olmayan Kontrol Algoritması ve Deneysel Doğrulaması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):621-39.