Demiryolu Bağlantı Elemanları için Anahtar Noktalar ve Görsel Kelime Çantası Tabanlı Kusur Tespit Yöntemi
Yıl 2021,
Cilt: 33 Sayı: 2, 587 - 597, 15.09.2021
İlhan Aydın
,
Emre Güçlü
,
Erhan Akın
Öz
Demiryolu hattı; raylar, ray traversleri ve bağlantı elemanlarından oluşan stabil bir yapıdır. Bu yapı tekerlekler için güvenilir bir yüzey sağlayarak trenlerin taşınmasını sağlar. Eğer bu yapı bozulursa güvenlik sorunları ortaya çıkar. Bu nedenle hat üzerinde oluşabilecek kusurların incelenmesi önemli bir konu haline gelmiştir. Bu çalışmada, ray bağlantı elemanlarında oluşan kusurların tespiti için bilgisayarlı görme tabanlı bir yaklaşım önerilmiştir. Önerilen yaklaşımda ilk olarak ray görüntüsünden bağlantı elemanının konumunu belirlenmektedir. Daha sonra bağlantı elemanı ile ilgili tanımlayıcı özellikler ORB yöntemi ile elde edilmektedir. Son aşamada ise elde edilen özellikler kullanılarak bağlantı elemanı için kusurlu veya sağlam olarak sınıflandırma işlemi yapılmaktadır. Önerilen yöntemin başarımı deneysel olarak doğrulanmış ve %96.88’lik bir başarım elde edilmiştir. Aynı veri kümesi üzerinde SURF anahtar nokta çıkarım tekniği ve HOG tekniği de uygulanmıştır. Üç tekniğin sonuçları karşılaştırılmıştır. Ayrıca elde edilen sonuç, literatürde bulunan farklı çalışmaların sonuçları ile karşılaştırılıp tablo halinde sunulmuştur.
Destekleyen Kurum
TUBITAK
Kaynakça
- Peng, Z., Wang, C., Ma, Z., & Liu, H. (2019). A Multifeature Hierarchical Locating Algorithm for Hexagon Nut of Railway Fasteners. IEEE Transactions on Instrumentation and Measurement, 69(3), 693-699.
- Utrata, D., & Clark, R. (2003, March). Groundwork for rail flaw detection using ultrasonic phased array inspection. In AIP Conference Proceedings (Vol. 657, No. 1, pp. 799-805). American Institute of Physics.
- Chen, Q., Niu, X., Zuo, L., Zhang, T., Xiao, F., Liu, Y., & Liu, J. (2018). A railway track geometry measuring trolley system based on aided INS. Sensors, 18(2), 538.
- Gan, J., Wang, J., Yu, H., Li, Q., & Shi, Z. (2018). Online rail surface inspection utilizing spatial consistency and continuity. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
- Zhang, H., Jin, X., Wu, Q. J., Wang, Y., He, Z., & Yang, Y. (2018). Automatic visual detection system of railway surface defects with curvature filter and improved Gaussian mixture model. IEEE Transactions on Instrumentation and Measurement, 67(7), 1593-1608.
- Gibert, X., Patel, V. M., & Chellappa, R. (2016). Deep multitask learning for railway track inspection. IEEE transactions on intelligent transportation systems, 18(1), 153-164.
- Liu, J., Huang, Y., Zou, Q., Tian, M., Wang, S., Zhao, X., ... & Ren, S. (2019). Learning visual similarity for inspecting defective railway fasteners. IEEE Sensors Journal, 19(16), 6844-6857.
- Feng, H., Jiang, Z., Xie, F., Yang, P., Shi, J., & Chen, L. (2013). Automatic fastener classification and defect detection in vision-based railway inspection systems. IEEE transactions on instrumentation and measurement, 63(4), 877-888.
- Aytekin, Ç., Rezaeitabar, Y., Dogru, S., & Ulusoy, I. (2015). Railway fastener inspection by real-time machine vision. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(7), 1101-1107.
- Wei, X., Yang, Z., Liu, Y., Wei, D., Jia, L., & Li, Y. (2019). Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study. Engineering Applications of Artificial Intelligence, 80, 66-81.
- He, B., Luo, J., Ou, Y., Xiong, Y., & Li, B. (2020). Railway Fastener Defects Detection under Various Illumination Conditions using Fuzzy C-Means Part Model. Transportation Research Record, 0361198120977182.
- Ma, A., Lv, Z., Chen, X., Li, L., Qiu, Y., Zheng, S., & Chai, X. (2020). Pandrol track fastener defect detection based on local convolutional neural networks. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 0959651820953679.
- Mery, D., & Pedreschi, F. (2005). Segmentation of colour food images using a robust algorithm. Journal of Food engineering, 66(3), 353-360.
- Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
- Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 24(7), 971-987.
- Fan, H., Cosman, P. C., Hou, Y., & Li, B. (2018). High-speed railway fastener detection based on a line local binary pattern. IEEE Signal Processing Letters, 25(6), 788-792.
- Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004, May). Visual categorization with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV (Vol. 1, No. 1-22, pp. 1-2).
- Taheri, N., Nejad, F. M., & Zakeri, H. (2019). A Brief Overview and New Knowledge Based System for Rail Direct Fastening Evaluation Using Digital Image Processing. Archives of Computational Methods in Engineering, 1-19.