Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Dayanımlı Betonların Basınç Dayanımının Olgunluk Yöntemi Tabanlı Tahmin Eden Sayısal Modellerin Geliştirilmesi

Yıl 2025, Cilt: 37 Sayı: 1, 49 - 60
https://doi.org/10.35234/fumbd.1464418

Öz

Bu çalışmanın amacı, Nurse-Saul ve Arrhenius (NS-Arr) olgunluk fonksiyonlarını kullanarak yüksek dayanımlı beton (YDB)'lerin basınç dayanımını tahmin etmek için sayısal modeller geliştirmektir. Bu amaçla, 400-450-500 kg/m3 dozajlı farklı beton karışım oranlarına sahip 9 beton serisi üretilmiştir. Çimento yerine hacimce %5-10-15 oranında silis dumanı ve ince agrega yerine hacimce %8-10-12 oranında mermer tozu kullanılmıştır. Numuneler standart kürde bekletilirken, olgunluk testinde kullanılmak üzere 1., 3., 7., 14. ve 28. günlerin sonunda her 5 dakikada bir sıcaklık değerleri ölçülmüş ve sonuçlar bilgisayara aktarılmıştır. Basınç dayanımı testi de aynı zaman dilimlerinde gerçekleştirilmiştir. Test sonuçlarından elde edilen veriler analiz edilmiş ve uygulanan her olgunluk fonksiyonu için ayrı bir sayısal model geliştirilmiştir. Ayrıca bu modellerin kullanımı ile beton basınç dayanımının kısa sürede yüksek doğrulukla tahmin edileceği, proje-iş planının zaman kaybı olmadan yürütüleceği ve çevresel sürdürülebilirliğe katkı sağlanacağı düşünülmektedir.

Kaynakça

  • Belykh I, Sopov V, Butska L, Pershina L, and Makarenko O. Predicting the strength and maturity of hardening concrete. In MATEC Web of Conferences 2018; 230:001.
  • Tareen N, Kim J, Kim WK, and Park S. Comparative analysis and strength estimation of fresh concrete based on ultrasonic wave propagation and maturity using smart temperature and PZT sensors. Micromachines 2019; 10(9): 559.
  • ACI Committee 318-19. Building Code Requirement for Structural Concrete and Commentary. American Concrete Institute 2019; Farmington Hills, Michigan.
  • Soutsos M, Kanavaris F, and Hatzitheodorou A. Critical analysis of strength estimates from maturity functions. Case Stud Constr Materials 2018; 9: p. 00183.
  • Miller D, Ho NM, and Talebian N. Monitoring of in-place strength in concrete structures using maturity method–An overview. In Structures 2022; 44:1081–1104.
  • Tekle BH, Al‐Deen S, Anwar‐Us‐Saadat M, Willans N, Zhang Y, and Lee CK. Use of maturity method to estimate early age compressive strength of slab in cold weather. Structura Concrete 2022; 23(2):176–1190.
  • Wood DA. Re-establishing the merits of thermal maturity and petroleum generation multi-dimensional modeling with an Arrhenius Equation using a single activation energy. Journal Earth Science 2017; 28(5): 804–834.
  • Chengju G. Maturity of concrete: method for predicting early-stage strength. Materials Journal 1989; 86(4): 341–353.
  • Demir T, Ulucan M, and Alyamac KE. Determination of Early Age Strength of High Strength Concretes Using RSM Method. Fırat Univ Journal Eng Science 2022; 34(1):105–114.
  • Guo YB, Gao GF, Jing L, and Shim VPW. Response of high-strength concrete to dynamic compressive loading. Int J Impact Engineering 2017; 108:114–135.
  • Demir T and Alyamaç KE. Investigation of the Use of Marble Powder in Production of High Strength Concretes. Open Journal of Nano 2022; 7(1):18–25.
  • Kandiri A, Golafshani EM, and Behnood A. Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Construction Build Materials 2020; 248:18676.
  • TS EN 12504-2. Test. Concr. Struct. part-2 non-destructive testing, Determ rebound number. Standard 2004; Turkish Standards Institute, Turkey.
  • B. Standard. Structural Use of Concrete: Code of Practice for Design and Construction, Part 1, BS 8110 British Standard Institution 1997; UK.
  • Malhotra VM. Testing hardened concrete: nondestructive methods. Iowa State University Press, 1976.
  • Malek J, and Kaouther M. Destructive and non-destructive testing of concrete structures. Jordan J Civil Engineering 2014; 8(4):432–441.
  • Tsioulou O, Lampropoulos A, and Paschalis S. Combined non-destructive testing (NDT) method for the evaluation of the mechanical characteristics of ultra high performance fibre reinforced concrete (UHPFRC). Construction Build Materials 2017; 131:66–77.
  • Shah AA, and Ribakov Y. Non-destructive evaluation of concrete in damaged and undamaged states. Materials Design 2009; 30(9):3504–351.
  • Demir T. Development of Combined Methods to Estimate the in-Place Strength of High Strength Concrete Using Non-Destructive Testing Methods. Fırat University 2022.
  • ASTM C 1074. Standart Practice for Estimating Concrete Strength by the Maturity Method, ASTM Standards 1987; Philadelphia.
  • TS EN 197-1. P. and C. C. Cement - Part 1: General Cements, Composition, Turkish Standards Institute 2012; Turkey.
  • TS EN 706. Aggregate for concretes. Turkish Standards Institute 2003; Turkey.
  • Soykan O, Cengiz Ö, and Cenk Ö. Investigation of the Usability of Slate and Andesite as Concrete Aggregate. J Suleyman Demirel Univ Grad School Nat Appl Science 2015; 19(1).
  • Flores Medina N, Barluenga G, and Hernández-Olivares F. Combined effect of Polypropylene fibers and Silica Fume to improve the durability of concrete with natural Pozzolans blended cement. Construction Build Materials 2015; 96.
  • Yu R, Spiesz P, and. Brouwers HJH. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement Concrete Composite 2015; 55.
  • Vigneshwari M, Arunachalam K, and Angayarkanni A. Replacement of silica fume with thermally treated rice husk ash in Reactive Powder Concrete. Journal Clean Production 2018; 188.
  • TS EN 196–2. Methods Test. Cement. Turkish Standards Institute 2010; Turkey.
  • TS EN 25. Natural pozzolan (Trass) for use in cement and concrete - Definitions, requirements and conformity criteria. Turkish Standards Institute 2015; Turkey.
  • Demir T, Ulucan M, and Alyamaç KE. Determination of Early Age Strength of High Strength Concretes Using the RSM Method. Fırat University Engineering Science Journal 2022; 34, (1):105–114.
  • Demir T, Demirel B, and Öztürk M. An Evaluation of the Effect of Waste Aluminum Sawdust on the Carbonation of Concrete. Bitlis Eren Univ J Science 2022; 11(4):993–999.
  • Breysse D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Construction Build Materials 2012; 33:139–163.

Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method

Yıl 2025, Cilt: 37 Sayı: 1, 49 - 60
https://doi.org/10.35234/fumbd.1464418

Öz

The aim of this study was to develop numerical models to predict the compressive strength of HSCs using Nurse-Saul and Arrhenius (NS-Arr) maturity functions. For this purpose, 9 concrete series with different concrete mix ratios of 400-450-500 kg/m3 binder dosage were produced. Silica fume was used instead of cement at the rate of 5-10-15% by volume and marble powder was used instead of fine aggregate at the rate of 8-10-12% by volume. While the specimens were kept in standard water curing, the temperature values were measured every 5 minutes at the end of the 1st, 3rd, 7th, 14th and 28th days to be used in the maturity test and the results were transferred to the computer. The compressive strength test was also performed in the same time periods. The data obtained from the test results were analyzed and a separate numerical model was developed for each maturity function applied. In addition, with the use of these models, it is thought that concrete compressive strength will be predicted with high accuracy in a short time, the project-work plan will be carried out without loss of time and environmental sustainability will be contributed.

Kaynakça

  • Belykh I, Sopov V, Butska L, Pershina L, and Makarenko O. Predicting the strength and maturity of hardening concrete. In MATEC Web of Conferences 2018; 230:001.
  • Tareen N, Kim J, Kim WK, and Park S. Comparative analysis and strength estimation of fresh concrete based on ultrasonic wave propagation and maturity using smart temperature and PZT sensors. Micromachines 2019; 10(9): 559.
  • ACI Committee 318-19. Building Code Requirement for Structural Concrete and Commentary. American Concrete Institute 2019; Farmington Hills, Michigan.
  • Soutsos M, Kanavaris F, and Hatzitheodorou A. Critical analysis of strength estimates from maturity functions. Case Stud Constr Materials 2018; 9: p. 00183.
  • Miller D, Ho NM, and Talebian N. Monitoring of in-place strength in concrete structures using maturity method–An overview. In Structures 2022; 44:1081–1104.
  • Tekle BH, Al‐Deen S, Anwar‐Us‐Saadat M, Willans N, Zhang Y, and Lee CK. Use of maturity method to estimate early age compressive strength of slab in cold weather. Structura Concrete 2022; 23(2):176–1190.
  • Wood DA. Re-establishing the merits of thermal maturity and petroleum generation multi-dimensional modeling with an Arrhenius Equation using a single activation energy. Journal Earth Science 2017; 28(5): 804–834.
  • Chengju G. Maturity of concrete: method for predicting early-stage strength. Materials Journal 1989; 86(4): 341–353.
  • Demir T, Ulucan M, and Alyamac KE. Determination of Early Age Strength of High Strength Concretes Using RSM Method. Fırat Univ Journal Eng Science 2022; 34(1):105–114.
  • Guo YB, Gao GF, Jing L, and Shim VPW. Response of high-strength concrete to dynamic compressive loading. Int J Impact Engineering 2017; 108:114–135.
  • Demir T and Alyamaç KE. Investigation of the Use of Marble Powder in Production of High Strength Concretes. Open Journal of Nano 2022; 7(1):18–25.
  • Kandiri A, Golafshani EM, and Behnood A. Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Construction Build Materials 2020; 248:18676.
  • TS EN 12504-2. Test. Concr. Struct. part-2 non-destructive testing, Determ rebound number. Standard 2004; Turkish Standards Institute, Turkey.
  • B. Standard. Structural Use of Concrete: Code of Practice for Design and Construction, Part 1, BS 8110 British Standard Institution 1997; UK.
  • Malhotra VM. Testing hardened concrete: nondestructive methods. Iowa State University Press, 1976.
  • Malek J, and Kaouther M. Destructive and non-destructive testing of concrete structures. Jordan J Civil Engineering 2014; 8(4):432–441.
  • Tsioulou O, Lampropoulos A, and Paschalis S. Combined non-destructive testing (NDT) method for the evaluation of the mechanical characteristics of ultra high performance fibre reinforced concrete (UHPFRC). Construction Build Materials 2017; 131:66–77.
  • Shah AA, and Ribakov Y. Non-destructive evaluation of concrete in damaged and undamaged states. Materials Design 2009; 30(9):3504–351.
  • Demir T. Development of Combined Methods to Estimate the in-Place Strength of High Strength Concrete Using Non-Destructive Testing Methods. Fırat University 2022.
  • ASTM C 1074. Standart Practice for Estimating Concrete Strength by the Maturity Method, ASTM Standards 1987; Philadelphia.
  • TS EN 197-1. P. and C. C. Cement - Part 1: General Cements, Composition, Turkish Standards Institute 2012; Turkey.
  • TS EN 706. Aggregate for concretes. Turkish Standards Institute 2003; Turkey.
  • Soykan O, Cengiz Ö, and Cenk Ö. Investigation of the Usability of Slate and Andesite as Concrete Aggregate. J Suleyman Demirel Univ Grad School Nat Appl Science 2015; 19(1).
  • Flores Medina N, Barluenga G, and Hernández-Olivares F. Combined effect of Polypropylene fibers and Silica Fume to improve the durability of concrete with natural Pozzolans blended cement. Construction Build Materials 2015; 96.
  • Yu R, Spiesz P, and. Brouwers HJH. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement Concrete Composite 2015; 55.
  • Vigneshwari M, Arunachalam K, and Angayarkanni A. Replacement of silica fume with thermally treated rice husk ash in Reactive Powder Concrete. Journal Clean Production 2018; 188.
  • TS EN 196–2. Methods Test. Cement. Turkish Standards Institute 2010; Turkey.
  • TS EN 25. Natural pozzolan (Trass) for use in cement and concrete - Definitions, requirements and conformity criteria. Turkish Standards Institute 2015; Turkey.
  • Demir T, Ulucan M, and Alyamaç KE. Determination of Early Age Strength of High Strength Concretes Using the RSM Method. Fırat University Engineering Science Journal 2022; 34, (1):105–114.
  • Demir T, Demirel B, and Öztürk M. An Evaluation of the Effect of Waste Aluminum Sawdust on the Carbonation of Concrete. Bitlis Eren Univ J Science 2022; 11(4):993–999.
  • Breysse D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Construction Build Materials 2012; 33:139–163.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm MBD
Yazarlar

Tuba Demir 0000-0003-2092-1029

Kürşat Esat Alyamaç 0000-0002-3226-4073

Yayımlanma Tarihi
Gönderilme Tarihi 3 Nisan 2024
Kabul Tarihi 4 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Demir, T., & Alyamaç, K. E. (t.y.). Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 49-60. https://doi.org/10.35234/fumbd.1464418
AMA Demir T, Alyamaç KE. Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 37(1):49-60. doi:10.35234/fumbd.1464418
Chicago Demir, Tuba, ve Kürşat Esat Alyamaç. “Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 t.y.: 49-60. https://doi.org/10.35234/fumbd.1464418.
EndNote Demir T, Alyamaç KE Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 49–60.
IEEE T. Demir ve K. E. Alyamaç, “Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 49–60, doi: 10.35234/fumbd.1464418.
ISNAD Demir, Tuba - Alyamaç, Kürşat Esat. “Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (t.y.), 49-60. https://doi.org/10.35234/fumbd.1464418.
JAMA Demir T, Alyamaç KE. Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method. Fırat Üniversitesi Mühendislik Bilimleri Dergisi.;37:49–60.
MLA Demir, Tuba ve Kürşat Esat Alyamaç. “Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 49-60, doi:10.35234/fumbd.1464418.
Vancouver Demir T, Alyamaç KE. Development of Numerical Models to Predict the Compressive Strength of High Strength Concretes Based on Maturity Method. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 37(1):49-60.