Araştırma Makalesi
BibTex RIS Kaynak Göster

Sentiment Analizinde Öznitelik Düşürme Yöntemlerinin Oto Kodlayıcılı Derin Öğrenme Makinaları ile Karşılaştırılması

Yıl 2017, , 319 - 326, 31.07.2017
https://doi.org/10.17671/gazibtd.331046

Öz

Günümüz
teknolojisinde internetin her kesim tarafından çok yoğun olarak
kullanılmasından dolayı insanlar artık görüş, fikir ve hislerini sosyal
paylaşım siteleri, forum, blog benzeri birçok ortam aracılığı ile paylaşmaya
başlamıştır. Ancak her geçen gün artan veri sayısı ve boyutu, bu verilerden
manuel olarak anlamlı bilgiler çıkartılmasını çok zahmetli ve pahalı bir iş
haline getirmektedir. Otomatik olarak verinin duygu içerip içermediğinin
saptanması ve bu duygunun olumlu, olumsuz veya tarafsız olma durumunun
belirlenmesi duygu analizi yardımıyla gerçekleştirilmektedir. Duygu düşünce
analizinde, konuşma dilinin karmaşıklığı, değerlendirilen metin sayısının
fazlalığı ve uzunluğu, çok sayıda gereksiz ve gürültü içeren öznitelik
vektörüne neden olmaktadır. Boyut problemi olarak adlandırılan bu durum
hesaplama zamanın artmasına ve sınıflama hatalarına yol açmaktadır. Bu
çalışmada ise bahsedilen problemlere çözüm olarak önerilen derin öğrenme
tabanlı oto kodlayıcı (Autoencoder) modeli ile gürültü giderici oto kodlayıcı
(Denoising Autoencoder) modeli boyut düşürme tekniği olarak kullanılmış ve
literatürde yaygın olarak kullanılan diğer boyut düşürme teknikleri ile
kıyaslanmıştır. Elde edilen tüm veri setleri için sınıflama algoritması olarak
Destek Vektör Makinaları ve Yapay Sinir Ağları kullanan farklı modeller
geliştirilmiştir. Yapılan analizlerin sonucunda, boyut düşürme tekniklerinin
duygu analizi için elde edilen sonuçları iyileştirdiği, önerilen oto kodlayıcı
modellerinin ise var olan tekniklere benzer ya da onlardan daha iyi sonuçlar
aldığı gözlemlenmiştir.

Kaynakça

  • [1] J. Li and M. Sun, “Experimental Study on Sentiment Classification of Chinese Review using Machine Learning Techniques,” International Conference on Natural Language Processing and Knowledge Engineering, 2007, pp. 393–400. [2] G. Alec, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant Supervision.” 2009. [3] K. Mouthami, K. N. Devi, and V. M. Bhaskaran, “Sentiment analysis and classification based on textual reviews,” International Conference on Information Communication and Embedded Systems (ICICES), 2013, pp. 271–276. [4] V. K. Singh, R. Piryani, A. Uddin, P. Waila, and Marisha, “Sentiment Analysis of Textual Reviews,” The 5 th International Conference on Knowledge and Smart Technology, 2013. [5] G. Gautam and D. Yadav, “Sentiment analysis of twitter data using machine learning approaches and semantic analysis,” Seventh International Conference on Contemporary Computing (IC3), 2014, pp. 437–442. [6] H. Nizam and S. S. Akın, “Sosyal Medyada Makine Öğrenmesi ile Duygu Analizinde Dengeli ve Dengesiz Veri Setlerinin Performanslarının Karşılaştırılması,” XIX. Türkiye’de İnternet Konferansı, 2014. [7] Ö. Çoban, B. Özyer, and G. T. Özyer, “Sentiment analysis for Turkish Twitter feeds,” 23nd Signal Processing and Communications Applications Conference (SIU), 2015, pp. 2388–2391. [8] J. Kranjc, J. Smailović, V. Podpečan, M. Grčar, M. Žnidaršič, and N. Lavrač, “Active learning for sentiment analysis on data streams: Methodology and workflow implementation in the ClowdFlows platform,” Inf. Process. Manag., vol. 51, no. 2, pp. 187–203, Mar. 2015. [9] A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of sentiment reviews using n-gram machine learning approach,” Expert Syst. Appl., vol. 57, pp. 117–126, Eylül 2016. [10] V. Rohini, M. Thomas, and C. A. Latha, “Domain based sentiment analysis in regional Language-Kannada using machine learning algorithm,” IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), 2016, pp. 503–507. [11] R. Xia, C. Zong, and S. Li, “Ensemble of feature sets and classification algorithms for sentiment classification,” Inf. Sci., vol. 181, no. 6, pp. 1138–1152, Mar. 2011. [12] M. S. Neethu and R. Rajasree, “Sentiment analysis in twitter using machine learning techniques,” Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 2013, pp. 1–5. [13] E. Fersini, E. Messina, and F. A. Pozzi, “Sentiment analysis: Bayesian Ensemble Learning,” Decis. Support Syst., vol. 68, pp. 26–38, Aralık 2014. [14] N. F. F. da Silva, E. R. Hruschka, and E. R. Hruschka Jr., “Tweet sentiment analysis with classifier ensembles,” Decis. Support Syst., vol. 66, pp. 170–179, Ekim 2014. [15] C. Catal and M. Nangir, “A sentiment classification model based on multiple classifiers,” Appl. Soft Comput., vol. 50, pp. 135–141, Ocak 2017. [16] S. Tan and J. Zhang, “An empirical study of sentiment analysis for chinese documents,” Expert Syst. Appl., vol. 34, no. 4, pp. 2622–2629, May 2008. [17] A. GO, L. Huang, and R. Bhayani, “Twitter Sentiment Analysis.” 2009. [18] M. Meral and B. Diri, “Sentiment analysis on Twitter,” 22nd Signal Processing and Communications Applications Conference (SIU), 2014, pp. 690–693. [19] G. Vinodhini and R. M. Chandrasekaran, “Effect of Feature Reduction in Sentiment analysis of online reviews,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 2, no. 6, 2013. [20] A. Yousefpour and H. N. Hamed, “A Novel Feature Reduction Method in Sentiment Analysis,” Int. J. Innov. Comput., 2014. [21] K. Kim and J. Lee, “Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction,” Pattern Recognit., vol. 47, no. 2, pp. 758–768, ubat 2014. [22] L. B. Shyamasundar and P. J. Rani, “Twitter sentiment analysis with different feature extractors and dimensionality reduction using supervised learning algorithms,” IEEE Annual India Conference (INDICON), 2016, pp. 1–6. [23] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,” Workshop on Unsupervised and Transfer Learning, 2012. [24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1,” D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Eds. Cambridge, MA, USA: MIT Press, 1986, pp. 318–362. [25] Movie Review Data: https://www.cs.cornell.edu/people/ pabo/movie-review-data/, 01.03.2017.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Oğuz Kaynar

Zafer Aydın

Yasin Görmez

Yayımlanma Tarihi 31 Temmuz 2017
Gönderilme Tarihi 26 Temmuz 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Kaynar, O., Aydın, Z., & Görmez, Y. (2017). Sentiment Analizinde Öznitelik Düşürme Yöntemlerinin Oto Kodlayıcılı Derin Öğrenme Makinaları ile Karşılaştırılması. Bilişim Teknolojileri Dergisi, 10(3), 319-326. https://doi.org/10.17671/gazibtd.331046

Cited By







DUYGU ANALİZİ VE FİKİR MADENCİLİĞİ UYGULAMALARI ÜZERİNE LİTERATÜR TARAMASI
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi
Hatice Elif EKİM
https://doi.org/10.17780/ksujes.819367