Machine Learning and especially deep learning models need to be optimized over three main criteria concurrently, to be operationalized in real-time field applications. These criteria are model’s accuracy, training-testing times and file size. Related work only considers two criteria (e.g. accuracy-time) together. However, it is observed that deep neural networks (DNN) designed to improve model accuracy can increase training time and size, while efforts to reduce model size can lead to lower accuracy. A trade-off needs to be made among these three criteria.
In this paper, to demonstrate the effects of different optimization techniques on model performance, we tested ResNet50, ResNet101, VGG16, VGG19, EfficientNet pre-trained models with CIFAR10, CIFAR100 image datasets, which are commonly utilized in the DNN research field. Important performance results obtained over Google Colab Pro and TensorFlow system show that weight quantization is the most successful technique so far in multi-dimensional optimization, while weight clustering and transfer learning techniques remain useful in 2-dimensions. In addition, we designed and tested a new DNN operational score and model-to-model layer transfer method for the first time in literature. We hope that our framework will constitute a multi-dimensional evaluation reference for DNN models before they are operationalized.
operational machine learning deep learning deep neural networks pretrained models RESNET CIFAR VGG accuracy training time
Makine öğrenmesi ve özellikle derin öğrenme modellerinin gerçek-zamanlı saha uygulamalarında operasyona alınması için üç ana kriterin aynı anda optimizasyonu gerekmektedir. Bunlar modelin tahmin doğruluğu, eğitim-test süreleri ile dosya boyutu olup ilgili çalışmalarda sadece iki kriter (örnek: doğruluk-süre) beraber göz önüne alınmıştır. Ancak, modellerin tahmin doğruluğunu artırmak için oluşturulan derin sinir ağlarının (DSA) eğitim süresi ve boyutunu artırdığı, boyutunu küçültmek için yapılan çalışmaların ise doğruluğunu düşürdüğü gözlemlenmiştir. Bu üç kriter arasında bir ödünleşme yapılması gerekmektedir.
Farklı optimizasyon tekniklerinin modelin performansına etkisini göstermek için, bu makalede DSA araştırma alanında sıklıkla kullanılan ResNet50, ResNet101, VGG16, VGG19 ve EfficientNet ön-eğitimli modellerini CIFAR10, CIFAR100 görsel veri kümeleriyle test ettik. Google Colab Pro ve Tensorflow sistemi üzerinde yaptığımız başarım çalışmalardan elde edilen önemli sonuçların arasında ağırlık quantizasyonun çok-boyutlu optimizasyonunda şu ana kadarki en başarılı teknik olduğu, ağırlık kümeleme ve transfer öğrenimi tekniklerinin ise ancak 2-boyutta fayda sağladıkları söylenebilir. Çalışmamızda ayrıca, literatürde ilk defa DSA’lar için bir operasyonel skor ve modelden-modele katman aktarımı metodunu tasarlayıp, sınadık. Oluşturulan çerçevenin, yeni geliştirilen DSA modellerinin operasyona sokulmadan önce çok-boyutlu değerlendirilebilmeleri için bir referans teşkil etmesi umuyoruz.
operasyonel makine öğrenmesi derin öğrenme derin sinir ağları ön eğitimli modeller RESNET VGG CIFAR doğruluk eğitim süresi
Birincil Dil | İngilizce |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Ekim 2022 |
Gönderilme Tarihi | 22 Ağustos 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 15 Sayı: 4 |