Araştırma Makalesi
BibTex RIS Kaynak Göster

SCAG-Enhanced U-Net for Wheat Yellow-Rust Semantic Segmentation in Multispectral Remote Sensing

Yıl 2025, Cilt: 18 Sayı: 3, 227 - 238, 31.07.2025
https://doi.org/10.17671/gazibtd.1648997

Öz

The wheat yellow-rust disease poses a serious risk to global wheat production, making effective detection methods essential. This study aims to enhance wheat yellow-rust detection accuracy by investigating the use of spatial-channel attention gates (scAGs) in semantic segmentation with multispectral remote sensing images. While scAGs find applications in medical image segmentation and precision agriculture, this study extends usage for wheat yellow rust detection. Integrated into the skip connections of the U-Net model, scAGs aim to refine feature extraction and improve segmentation performance. Furthermore, to address a limitation in prior work that used only one upsampling method, this study explores multiple techniques—bilinear, bicubic, nearest neighbor, and transposed convolution—optimizing performance. According to experimental results, bicubic interpolation delivers the best performance, significantly enhancing wheat yellow-rust disease detection accuracy.

Kaynakça

  • H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, “Pyramid scene parsing network”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2881–2890, 2017.
  • L. C. Chen, G. Papandreou, F. Schroff, H. Adam, “Rethinking atrous convolution for semantic image segmentation”, arXiv preprint arXiv:1706.05587, 5, 2017.
  • J. Hu, L. Shen, G. Sun, “Squeeze-and-excitation networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 7132–7141, 2018.
  • S. Woo, J. Park, J. Y. Lee, I. S. Kweon, “CBAM: Convolutional block attention module”, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 3–19, 2018.
  • X. He, Y. Zhou, J. Zhao, D. Zhang, R. Yao, Y. Xue, “Swin transformer embedding UNet for remote sensing image semantic segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15, 2022.
  • J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, “Dual attention network for scene segmentation”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 3146–3154, 2019.
  • R. Li, S. Zheng, C. Zhang, C. Duan, J. Su, L. Wang, P. M. Atkinson, “Multiattention network for semantic segmentation of fine-resolution remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13, 2021.
  • X. Li, F. Xu, F. Liu, X. Lyu, Y. Tong, Z. Xu, J. Zhou, “A synergistical attention model for semantic segmentation of remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–16, 2023.
  • J. Zheng, A. Shao, Y. Yan, J. Wu, M. Zhang, “Remote sensing semantic segmentation via boundary supervision-aided multiscale channelwise cross attention network”, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14, 2023.
  • R. Guan, M. Wang, L. Bruzzone, H. Zhao, C. Yang, “Lightweight attention network for very high-resolution image semantic segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14, 2023.
  • J. Liu, W. Hua, W. Zhang, F. Liu, L. Xiao, “Stair fusion network with context refined attention for remote sensing image semantic segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 62, 1–17, 2024.
  • R. Niu, X. Sun, Y. Tian, W. Diao, K. Chen, K. Fu, “Hybrid multiple attention network for semantic segmentation in aerial images”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–18, 2021.
  • L. Ding, H. Tang, L. Bruzzone, “LANet: Local attention embedding to improve the semantic segmentation of remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, 59(1), 426–435, 2020.
  • O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional networks for biomedical image segmentation”, Medical Image Computing and Computer-Assisted Intervention International Conference, Munich, Germany, 234–241, 2015.
  • T. L. Khanh, D. P. Dao, N. H. Ho, H. J. Yang, E. T. Baek, G. Lee, S. B. Yoo, “Enhancing U-Net with spatial-channel attention gate for abnormal tissue segmentation in medical imaging”, Applied Sciences, 10(17), 5729, 2020.
  • S. Seong, J. Choi, “Semantic segmentation of urban buildings using a high-resolution network (HRNet) with channel and spatial attention gates”, Remote Sensing, 13(16), 3087, 2021.
  • S. Molavi Vardanjani, A. Fathi, K. Moradkhani, “Grsnet: Gated residual supervision network for pixel-wise building segmentation in remote sensing imagery”, International Journal of Remote Sensing, 43(13), 4872–4887, 2022.
  • J. Su, C. Liu, W. H. Chen, “UAV multispectral remote sensing for yellow rust mapping: Opportunities and challenges”, Unmanned Aerial Systems in Precision Agriculture: Technological Progresses and Applications, Springer, 107–122, 2022.
  • J. Su, C. Liu, M. Coombes, X. Hu, C. Wang, X. Xu, W. H. Chen, “Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery”, Computers and Electronics in Agriculture, 155, 157–166, 2018.
  • J. Su, C. Liu, X. Hu, X. Xu, L. Guo, W. H. Chen, “Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery”, Computers and Electronics in Agriculture, 167, 105035, 2019.
  • J. Su, D. Yi, B. Su, Z. Mi, C. Liu, X. Hu, W. H. Chen, “Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring”, IEEE Transactions on Industrial Informatics, 17(3), 2242–2249, 2020.
  • T. Zhang, Z. Xu, J. Su, Z. Yang, C. Liu, W. H. Chen, J. Li, “IR-UNet: Irregular segmentation U-Shape network for wheat yellow rust detection by UAV multispectral imagery”, Remote Sensing, 13(19), 3892, 2021.
  • I. Ulku, “ResLMFFNet: A real-time semantic segmentation network for precision agriculture”, Journal of Real-Time Image Processing, 21(4), 101, 2024.
  • I. Ulku, "ContexNestedU-Net: Efficient Context-Aware Semantic Segmentation Architecture for Precision Agriculture Applications Based on Multispectral Remote Sensing Imagery", Traitement du Signal, 41(5), 2425-2436, 2024.
  • E. A. Nogueira, J. P. Felix, A. U. Fonseca, G. Vieira, J. C. Ferreira, D. S. Fernandes, F. Soares, “Upsampling of unmanned aerial vehicle images of sugarcane crop lines with a Real-ESRGAN”, Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Regina, Canada, 285–290, 2023.
  • M. D. Zeiler, D. Krishnan, G. W. Taylor, R. Fergus, “Deconvolutional networks”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2528–2535, 2010.
  • A. K. Bhandari, A. Kumar, G. K. Singh, “Feature extraction using normalized difference vegetation index (NDVI): A case study of Jabalpur city”, Procedia Technology, 6, 612–621, 2012.
  • V. Badrinarayanan, A. Kendall, R. Cipolla, “SegNet: A deep convolutional encoder-decoder architecture for image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495, 2017.
  • I. Delibaşoğlu, M. Çetin, “Improved U-Nets with inception blocks for building detection”, Journal of Applied Remote Sensing, 14(4), 044512, 2020.
  • Z. W. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. M. Liang, “U-Net++: A nested U-Net architecture for medical image segmentation”, Proceedings of Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 3–11, 2018.
  • L. Wang, R. Li, C. Zhang, S. Fang, C. Duan, X. Meng, P. M. Atkinson, “UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery”, ISPRS Journal of Photogrammetry and Remote Sensing, 190, 196–214, 2022.
  • L. Zhou, C. Zhang, M. Wu, “D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high-resolution satellite imagery road extraction”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 182–186, 2018.
  • L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation”, Proceedings of European Conference on Computer Vision (ECCV), Munich, Germany, 801–818, 2018.
  • C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, “BiSeNet: Bilateral segmentation network for real-time semantic segmentation”, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 325–341, 2018.
  • H. Li, P. Xiong, H. Fan, J. Sun, “DFANet: Deep feature aggregation for real-time semantic segmentation”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 9514-9523, 2019.

SCAG ile Geliştirilmiş U-Net Kullanılarak Çok Bantlı Uzaktan Algılamada Buğday Sarı Pas Hastalığının Semantik Bölütlenmesi

Yıl 2025, Cilt: 18 Sayı: 3, 227 - 238, 31.07.2025
https://doi.org/10.17671/gazibtd.1648997

Öz

Buğday sarı pas hastalığı, küresel buğday üretimi için ciddi bir tehdit oluşturmaktadır ve etkili tespit yöntemleri büyük önem taşımaktadır. Bu çalışma, çok bantlı uzaktan algılama görüntülerinde semantik bölütleme için mekânsal-kanal dikkat kapıları (SCAG'ler) kullanımını araştırarak buğday sarı pas hastalığının tespit doğruluğunu artırmayı amaçlamaktadır. SCAG'ler tıbbi görüntü bölütleme ve hassas tarım alanında kullanılmakla birlikte, bu çalışma buğday sarı pas tespiti için kullanımını genişletmektedir. U-Net modelinin atlama bağlantılarına entegre edilen SCAG'ler, özellik çıkarımını iyileştirmeyi ve bölütleme performansını artırmayı hedeflemektedir. Ayrıca, önceki çalışmalar yalnızca tek bir yukarı örnekleme yöntemi kullanırken, bu çalışmada bilineer, bikübik, en yakın komşu ve transpoz konvolüsyon gibi birden fazla teknik araştırılarak performans optimize edilmiştir. Deneysel sonuçlara göre, bikübik enterpolasyon en iyi performansı göstererek buğday sarı pas hastalığının tespit doğruluğunu önemli ölçüde artırmıştır.

Kaynakça

  • H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, “Pyramid scene parsing network”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2881–2890, 2017.
  • L. C. Chen, G. Papandreou, F. Schroff, H. Adam, “Rethinking atrous convolution for semantic image segmentation”, arXiv preprint arXiv:1706.05587, 5, 2017.
  • J. Hu, L. Shen, G. Sun, “Squeeze-and-excitation networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 7132–7141, 2018.
  • S. Woo, J. Park, J. Y. Lee, I. S. Kweon, “CBAM: Convolutional block attention module”, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 3–19, 2018.
  • X. He, Y. Zhou, J. Zhao, D. Zhang, R. Yao, Y. Xue, “Swin transformer embedding UNet for remote sensing image semantic segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15, 2022.
  • J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, “Dual attention network for scene segmentation”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 3146–3154, 2019.
  • R. Li, S. Zheng, C. Zhang, C. Duan, J. Su, L. Wang, P. M. Atkinson, “Multiattention network for semantic segmentation of fine-resolution remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13, 2021.
  • X. Li, F. Xu, F. Liu, X. Lyu, Y. Tong, Z. Xu, J. Zhou, “A synergistical attention model for semantic segmentation of remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–16, 2023.
  • J. Zheng, A. Shao, Y. Yan, J. Wu, M. Zhang, “Remote sensing semantic segmentation via boundary supervision-aided multiscale channelwise cross attention network”, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14, 2023.
  • R. Guan, M. Wang, L. Bruzzone, H. Zhao, C. Yang, “Lightweight attention network for very high-resolution image semantic segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14, 2023.
  • J. Liu, W. Hua, W. Zhang, F. Liu, L. Xiao, “Stair fusion network with context refined attention for remote sensing image semantic segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 62, 1–17, 2024.
  • R. Niu, X. Sun, Y. Tian, W. Diao, K. Chen, K. Fu, “Hybrid multiple attention network for semantic segmentation in aerial images”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–18, 2021.
  • L. Ding, H. Tang, L. Bruzzone, “LANet: Local attention embedding to improve the semantic segmentation of remote sensing images”, IEEE Transactions on Geoscience and Remote Sensing, 59(1), 426–435, 2020.
  • O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional networks for biomedical image segmentation”, Medical Image Computing and Computer-Assisted Intervention International Conference, Munich, Germany, 234–241, 2015.
  • T. L. Khanh, D. P. Dao, N. H. Ho, H. J. Yang, E. T. Baek, G. Lee, S. B. Yoo, “Enhancing U-Net with spatial-channel attention gate for abnormal tissue segmentation in medical imaging”, Applied Sciences, 10(17), 5729, 2020.
  • S. Seong, J. Choi, “Semantic segmentation of urban buildings using a high-resolution network (HRNet) with channel and spatial attention gates”, Remote Sensing, 13(16), 3087, 2021.
  • S. Molavi Vardanjani, A. Fathi, K. Moradkhani, “Grsnet: Gated residual supervision network for pixel-wise building segmentation in remote sensing imagery”, International Journal of Remote Sensing, 43(13), 4872–4887, 2022.
  • J. Su, C. Liu, W. H. Chen, “UAV multispectral remote sensing for yellow rust mapping: Opportunities and challenges”, Unmanned Aerial Systems in Precision Agriculture: Technological Progresses and Applications, Springer, 107–122, 2022.
  • J. Su, C. Liu, M. Coombes, X. Hu, C. Wang, X. Xu, W. H. Chen, “Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery”, Computers and Electronics in Agriculture, 155, 157–166, 2018.
  • J. Su, C. Liu, X. Hu, X. Xu, L. Guo, W. H. Chen, “Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery”, Computers and Electronics in Agriculture, 167, 105035, 2019.
  • J. Su, D. Yi, B. Su, Z. Mi, C. Liu, X. Hu, W. H. Chen, “Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring”, IEEE Transactions on Industrial Informatics, 17(3), 2242–2249, 2020.
  • T. Zhang, Z. Xu, J. Su, Z. Yang, C. Liu, W. H. Chen, J. Li, “IR-UNet: Irregular segmentation U-Shape network for wheat yellow rust detection by UAV multispectral imagery”, Remote Sensing, 13(19), 3892, 2021.
  • I. Ulku, “ResLMFFNet: A real-time semantic segmentation network for precision agriculture”, Journal of Real-Time Image Processing, 21(4), 101, 2024.
  • I. Ulku, "ContexNestedU-Net: Efficient Context-Aware Semantic Segmentation Architecture for Precision Agriculture Applications Based on Multispectral Remote Sensing Imagery", Traitement du Signal, 41(5), 2425-2436, 2024.
  • E. A. Nogueira, J. P. Felix, A. U. Fonseca, G. Vieira, J. C. Ferreira, D. S. Fernandes, F. Soares, “Upsampling of unmanned aerial vehicle images of sugarcane crop lines with a Real-ESRGAN”, Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Regina, Canada, 285–290, 2023.
  • M. D. Zeiler, D. Krishnan, G. W. Taylor, R. Fergus, “Deconvolutional networks”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2528–2535, 2010.
  • A. K. Bhandari, A. Kumar, G. K. Singh, “Feature extraction using normalized difference vegetation index (NDVI): A case study of Jabalpur city”, Procedia Technology, 6, 612–621, 2012.
  • V. Badrinarayanan, A. Kendall, R. Cipolla, “SegNet: A deep convolutional encoder-decoder architecture for image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495, 2017.
  • I. Delibaşoğlu, M. Çetin, “Improved U-Nets with inception blocks for building detection”, Journal of Applied Remote Sensing, 14(4), 044512, 2020.
  • Z. W. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. M. Liang, “U-Net++: A nested U-Net architecture for medical image segmentation”, Proceedings of Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 3–11, 2018.
  • L. Wang, R. Li, C. Zhang, S. Fang, C. Duan, X. Meng, P. M. Atkinson, “UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery”, ISPRS Journal of Photogrammetry and Remote Sensing, 190, 196–214, 2022.
  • L. Zhou, C. Zhang, M. Wu, “D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high-resolution satellite imagery road extraction”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 182–186, 2018.
  • L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation”, Proceedings of European Conference on Computer Vision (ECCV), Munich, Germany, 801–818, 2018.
  • C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, “BiSeNet: Bilateral segmentation network for real-time semantic segmentation”, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 325–341, 2018.
  • H. Li, P. Xiong, H. Fan, J. Sun, “DFANet: Deep feature aggregation for real-time semantic segmentation”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 9514-9523, 2019.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme
Bölüm Araştırma Makalesi
Yazarlar

İrem Ülkü 0000-0003-4998-607X

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 28 Şubat 2025
Kabul Tarihi 16 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 3

Kaynak Göster

APA Ülkü, İ. (2025). SCAG-Enhanced U-Net for Wheat Yellow-Rust Semantic Segmentation in Multispectral Remote Sensing. Bilişim Teknolojileri Dergisi, 18(3), 227-238. https://doi.org/10.17671/gazibtd.1648997