Isıl işlem ile modifiye edilmiş arıtma çamuru kullanılarak sabit yataklı kolonda arsenik ve antimon giderimi
Yıl 2023,
, 629 - 638, 21.06.2022
Berna Kavacık
,
Deniz Dölgen
Öz
Bu çalışmada, demir içeren içme suyu arıtma tesis çamurunun (DWTS) arsenik ve antimon giderim performansı araştırılmıştır. DWTS üç farklı sıcaklıkta (200, 400 ve 600ºC) termal arıtmaya tabi tutularak modifiye edilmiştir (DWTS-200). 200ºC, 1saat ısıl işlem uygulanmış malzeme ile maksimum arsenik giderimi elde edilmiştir. Malzemenin yüzey alanı ve gözenek hacmi BET metoduyla analiz edilmiş, faz kompozisyonu X-ışını difraksiyonu (XRD) ile belirlenmiştir. Yüzey morfolojileri ve element analizi taramalı elektron mikroskobu (SEM) ve X-ışını spektrometresi (EDS) ile gerçekleştirilmiştir. Sonuçlar DWTS-200 malzemesinin oldukça yüksek yüzey alanına sahip olduğunu (170 m2 g-1) ve amorf yapısının baskın olduğunu göstermiştir. Malzemenin ana fazları ağırlıklı olarak demir, kalsit, oksijen ve quartzdan oluşmuştur. 40 µg As L-1 ve 80 µg Sb L-1 konsantrasyonları için kırılma noktasına ulaşıncaya kadar arsenik için 6.000 L (133.000 yatak hacmi sayısı), antimon için 640 L (14.000 yatak hacmi sayısı) su arıtabildiği belirlenmiştir. Kolon tasarımı için gerekli kinetik parametreleri belirlemek ve kırılma eğrilerini tahmin etmek için Thomas ve Yoon-Nelson modelleri uygulanmıştır. Her iki model adsorpsiyon sürecinin dinamik davranışını açıklamak için uygun bulunmuştur. Thomas modeliyle arsenik için maksimum adsorpsiyon kapasitesi 6,53 mg g-1, antimon için 5,21 mg g-1 olarak elde edilmiştir. Ayrıca, DWTS-200 adsorban malzemeye rejenerasyon uygulanmış ve malzemenin rejenere edilerek kullanılabileceği görülmüştür.
Destekleyen Kurum
Dokuz Eylül Üniversitesi
Proje Numarası
BAP 2018.KB.FEN.036
Teşekkür
Bu çalışma Dokuz Eylül Üniversitesi, Bilimsel Araştırma Proje Programı (Proje No: BAP 2018.KB.FEN.036) tarafından desteklenmiştir.
Kaynakça
- 1. Shaji, E., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, V., Divya, B.V., Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula, Geoscience Frontiers, 12 (3), 101079, 2021. https://doi.org/10.1016/j.gsf.2020.08.015.
- 2. Arikan, S., Dolgen, D., Alpaslan, M.N., Arsenic removal from aqueous solutions using ironoxide coating sepiolite, Fresenius Environment Bulletin (FEB), 26 (12A), 7634-7642, 2017.
- 3. Ungureanu, G., Santos, S., Boaventura, R.A.R., Botelho, C.M.S., Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption, Journal of Environmental Management, 151C:326-342, 2015. DOI: 10.1016/j.jenvman.2014.12.051.
- 4. Sancha, A. M., Review of coagulation technology for removal of arsenic: Case of Chile. In, Journal of Health, Population and Nutrition, Volume 24 , 267-272, 2006.
- 5. Arıkan, S., Investigation of arsenic adsorption performance of the modified natural materials, Thesis of Degree of Doctor, Graduate School of Natural and Applied Sciences of Dokuz Eylül University, İzmir, 14p, 2016.
- 6. Attinti, R., Sarkar, D., Barrett, K. R., Datta, R., Adsorption of arsenic (V) from aqueous solutions by goethite/silica nanocomposite, Int. J. Environ. Sci. Technol., 12:3905–3914, 2015.
- 7. Vaclavikova, M., Gallios, G.P., Hredzak, S. et al., Removal of arsenic from water streams: an overview of available techniques, Clean Techn Environ Policy, 10, 89–95, 2008. https://doi.org/10.1007/s10098-007-0098-3.
- 8. Nekhunguni, P.M., Tavengwa, N.T., Tutu, H., Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite, Journal of Environmental Management, 197, 550-558, 2017.
- 9. Ocinski, D., Jacukowicz-Sobala, I., Mazur, P., Raczyk, J., Kociolek-Balawejder, E., Water treatment residuals containing iron and manganese oxides for arsenic removal from water- characterization of physicochemical properties and adsorption studies, Chemical Engineering Journal, 294, 210-221, 2016.
- 10. Mohan, D. and Pittman Jr., C.U., Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. Journal of Hazardous Materials, 142, 1-53, 2007. http://dx.doi.org/10.1016/j.jhazmat.2007.01.006.
- 11. Razali, M., Zhao, Y.Q., Bruen, M., Effectiveness of a drinking water treatment sludge in removing different phosphorus species from aqueous solution, Seperation and Purification Technology, 55, 300-306, 2007.
- 12. Nagar, R., Sarkar, D., Makris K.C. Data, R., Effect of solution chemistry on arsenic sorption by Fe- and Al- based drinking-water treatment residuals, Chemosphere, 78(8), 1028-1035, 2010.
- 13. Caporale, A.G., Punamiya, P., Pigna, M., Violante, A., Sarkar, D., Effect of particle size of drinking water treatment residuals on the sorption of arsenic in the presence of competing ions, Journal of Hazardous Materials, 260, 644-651, 2013.
- 14. Sun, J., Pikaar, I., Sharma, K.R., Keller, J., Yuan, Z., Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge, Water Research, 71, 150-159, 2015.
- 15. Wang, C., Wu, Y., Bai, L., Zhao, Y., Yan, Z., Jiang, H., Liu, X., Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water, Journal of Environmental Management, 217, 363-372, 2018.
- 16. Wang, C., Jiang, H., Yuan, N., Pei, Y., Yan, Z., Tuning the adsorptive properties of drinking water treatment residue via oxygen-limited heat treatment for environmental recycle, Chemical Engineering Journal, 284, 571-581, 2016.
- 17. Chen, B., Zhou, D., Zhu, I.,. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environmental Science Technology, 42, 5137-5143, 2008.
- 18. Li, F., Cao, X., Zhao, I., Wang, J., Ding, Z., Effects of mineral additives on biochar formation: carbon retention, stability and properties, Environmental Science Technology, 48, 11211-11217, 2014.
- 19. Sabbatini, P., Rossi, F., Thern, G., Marajofsky, A., Fidalgo de Cortalezzi, M.M., Iron oxide adsorbers for arsenic removal: A low cost treatment for rural areas and mobile applications, Desalination, 251, 184–192, 2010.
- 20. Lee, S.H., Tanaka, M., Takahashi, Y., Kim, K.W., Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative adsorption mechanism by surface characterization, Chemospher, 211, 903-911, 2018.
- 21. Jeon, E., RYu, S., Park, S., Wang, L., Tsang, D.,Baek, K., Enhanced adsorption of arsenic onto alum sludge modified by calcination, Journal of Cleaner Production, 176, 2017. DOI:10.1016/j.jclepro.2017.12.153
- 22. Hlavay J, Polyák K., Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water, J Colloid Interface Sci., 284(1):71-7, 2005. doi: 10.1016/j.jcis.2004.10.032. PMID: 15752786.
- 23. Martinson, C.A. and Reddy, K.J., Adsorption of arsenic (III) and arsenic(V) by cupric oxide nanoparticles, Journal of Colloid and Interface Science, 336 (2), 406-411, 2009.
- 24. Gibbons, M.K., Gagnon, G.A., Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids, Water Research, 44, 5740-5749, 2010.
- 25. Pal, B.N., Granular ferric hydroxide for elimination of arsenic from drinking water, M/S Pal Trockner [P] Ltd., 2001.
- 26. Thirunavukkarasu, O.S., Viraraghavan, T., Subramanian, K.S., Arsenic removal from drinking water usin ıron-oxide coated sand, Water, Air and Soil Pollution, 142, 95-111, 2003.
- 27. Zouboulis, A.I. and Katsoyiannis, I.A., Arsenic removal using iron oxide loaded alginate beads, Ind. Eng. Chem. Res., 41, 24, 6149-6155, 2002.
- 28. Xu, Z., Cai, J., Pan, B., Mathematically modeling fixed-bed adsorption in aqueous systems, Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(3), 155-176, 2013.
- 29. Rozada, F., Otero, M., Garcia, A.I., Moran, A., Application in fixed bed systems of adsorbents obtained from sewage sludge and discharged tyres, Dyes Pigm., 72, 47-56, 2007.
- 30. Ghribi, A., Chlendi, M., Modeling of fixed bed adsorption: Application to the adsorption of organic dye, Asian Journal ofTextile, 1(4), 161-171, 2011.
- 31. Sigrist, M.E., Brusa, L., Beldomenico, H.R., Dosso, L., Tsendra, O.M., Gonzales, M.B., Pieck, C.L., Vera, C.R., Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents, Journal of Environmental Chemical Engineering, 2 (2), 927-934, 2014.
- 32. Goswami, A., Raul, P.K., Purkait, M.K., Arsenic adsorption using copper(II) oxide nanoparticles, Chemical Engineering Research and Design, 90 (9), 1387-1396, 2012.
- 33. Mohapatra, D., Mishra, D., Chaudhury, G.R., Das, R.P., Arsenic adsorption mechanism on clay minerals and its dependence on temperature, Korean Journal of Chemical Engineering, 24, 426-430, 2007.
- 34. Chuang, C.L., Fan, M., Xu, M., Brown, R.C., Sung, S., Saha, B., Huang, C. P., Adsorption of arsenic (V) by activated carbon prepared from oat hulls, 61 (4), 478-483, 2005.
- 35. Liu, B., Jian, M., Wang, H., Zhang, G., Liu, R., Zhang, X., Qu, J., Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8, Colloids and Surfaces A. 538, 164-172, 2018.
- 36. Das, T.K., Sakthivel, T.S., Jeyeranjan, A., Seal, S., Bezbaruah, A.N., Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications, Chemosphere, 253, 126702, 2020.
- 37. Yusof, M.S.M., Othman, M.H.D., Wahab, R.A., Jumbri, K., Razak, F.I.A., Kurniawan, T.A., Samah, R.A., Mustafa, A., Rahman, M.A., Jaafar, J., Ismail, A.F., Arsenic adsorption mechanism on palm oil fuel ash (POFA) powder suspension, Journal of Hazardous Materials, 383, 121214, 2020.
- 38. Celebi, H., Bilican, I., Bahadır, T., Applicability of innovative adsorbents in geogenic arsenic removal, Journal of Cleaner Production, 327, 129475, 2021.
- 39. Ocinski, D. and Mazur, P., Highly efficient arsenic sorbent based on residual from water deironing – Sorption mechanisms and column studies, Journal of Hazardous Materials, 382, 121062, 2020.
- 40. Zeng, H., Wang, F., Xu, K., Zhang, J., Li, D., Optimization and regeneration of chitosan-alginate hybrid adsorbent embedding iron-manganese sludge for arsenic removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, 125500, 2020.