Araştırma Makalesi
BibTex RIS Kaynak Göster

Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı

Yıl 2023, , 1345 - 1360, 06.01.2023
https://doi.org/10.17341/gazimmfd.1065131

Öz

Son yüzyılda, polilaktik asit (PLA), akrilonitril bütadien stiren (ABS) ve polietilen tereftalat glikol (PET-G) gibi polimer malzemeler hafif, ucuz, sürdürülebilir olması ve mühendislik uygulamaları için yeterli dayanımı sağladıklarından dolayı bir çok endüstriyel alanda sıklıkla kullanılmaktadır. Plastik malzemeler çoğunlukla ekstrüzyon metoduyla üretilse de, üç boyutlu (3B) baskı yöntemi de geleneksel imalat yöntemlerine göre avantajlarından dolayı son on yılda araştırmacıların dikkatini çekmektedir. 3B baskı ile üretilen polimerlerle ilgili literatürdeki çalışmalar incelendiğinde, çalışmaların çoğunlukla çekme, basma, üç nokta eğme gibi mekanik performansı belirleyici testler üzerine odaklandığı görülmektedir. Bu çalışmada ise, eriyik yığma modelleme (EYM) metoduyla üretilen PET-G parçaların sertlik ve çekme dayanımlarının belirlenmesinin yanı sıra, parçaların 20 ⁰C, 40 ⁰C ve 60 ⁰C gibi farklı ortam sıcaklıklarındaki ağırlık düşürme darbe yanıtına, katman yüksekliğinin (0,1 mm, 0,2 mm ve 0,4 mm) etkisi araştırılmıştır. Sonuçlar göstermektedir ki, katman yüksekliği 0,4 mm olan parçada maksimum ortalama sertlik değeri 69,4 Shore D olarak elde edilirken, minimum ortalama çekme dayanım değeri ise 39.24 MPa olarak aynı parçada gözlemlenmiştir. Ayrıca, enerji emmede katman yüksekliğinin test sıcaklığından daha baskın olduğu belirlenmiştir. Sonuç olarak, 60 ⁰C ortam sıcaklığında test edilen 0,1 mm katman yüksekliğindeki numunede maksimum emilen enerji 67.335 J olarak gözlemlenmiştir. Öte yandan, 0,4 mm katman yüksekliğine sahip ve 40 ⁰C ortam sıcaklığında test edilen numune, 28.070 J ile minimum enerji emmiştir. Son olarak makroskopik ve mikroskobik tespitlere göre 0,4 mm katman yüksekliğine sahip numunelerde herhangi bir çatlak gözlemlenmezken, katman yüksekliği 0,1 mm ve 0,2 mm olan numunelerde ise merkezden köşelere doğru uzanan çatlakların oluştuğu tespit edilmiştir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Maurya N.K., Rastogi V., Singh P., Feasibility analysis of manufacturing using rapid prototyping: A review, Materialstoday: Proceedings, 47 (13), 3711-3715, 2021.
  • 2. Pugliese R., Beltrami B., Regondi S., Lunetta C., Polymeric biomaterials for 3D printing in medicine: An overview, Annals of 3D Printed Medicine, 2, 100011, 2021.
  • 3. Liu W., Song H., Wang Z., Wang J., Huang C., Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method, Materials & Design, 181, 108065, 2019.
  • 4. Habib F.N., Iovenitti P., Masood S.H., Nikzad M., Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology, 155, 86-98, 2018.
  • 5. Ergene B., Yalçın, B., Investigation on mechanical performances of various cellular structures produced by fused deposition modeling (FDM) method, Journal of the Faculty of Engineering and Architecture of Gazi University, (Article in Press).
  • 6. Kas M., Yılmaz O., Radially graded porous structure design for laser powder bed fusion additive manufacturing of Ti-6Al-4V alloy, Journal of Materials Processing Technology, 296, 117186, 2021.
  • 7. Yaman U., Fabrication of topologically optimized parts via direct 3D printing, Gazi University Journal of Science Part C, 7 (1), 236-244, 2019.
  • 8. Jafferson J.M., Chatterjee D., A review on polymeric materials in additive manufacturing, Materialstoday: Proceedings, 46 (2), 1349-1365, 2021.
  • 9. Nichols M.R., How does the automotive industry benefit from 3D metal printing?, Metal Powder Report, 74 (5), 257-258, 2019.
  • 10. Mohanavel V., Ali K.S.A., Ranganathan K., Jeffrey J.A., Ravikumar M.M., Rajkumar S., The roles and applications of additive manufacturing in the aerospace and automobile sector, Materials Today: Proceedings, 47, 405-409, 2021.
  • 11. Ergene B., Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 469-484, 2022.
  • 12. Ergene B., Sekeroglu İ., Bolat Ç., Yalçın B., An experimental investigation on mechanical performances of 3D printed lightweight ABS pipes with different cellular wall thickness, Journal of Mechanical Engineering and Sciences, 15 (2), 8169-8177, 2021.
  • 13. Chan S.S.L., Pennings R.M., Edwards L., Franks G.V., 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability, Additive Manufacturing, 35, 101335, 2020.
  • 14. Ingrole A., Aguirre T.G., Fuller L., Donahue S.W., Bioinspired energy absorbing material designs using additive manufacturing, 119, 104518, 2021.
  • 15. Tsushima N., Tamayama M., Arizona H., Makihara K., Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing, Aerospace Science and Technology, 117, 106923, 2021.
  • 16. Petersmann S., Spoerk M., Steene W.V.D., Üçal M., Wiener J., Pinter G., Arbeiter F., Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing, Journal of the Mechanical Behavior of Biomedical Materials, 104, 103611, 2020.
  • 17. Ziolkowska P.S., Labowska M.B., Detyna J., Michalak I., Gruber P., A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques, Biocybernetics and Biomedical Engineering, 40 (2), 624-638, 2020.
  • 18. Borandeh S., Bochove B.V., Teotia A., Seppala J., Polymeric drug delivery systems by additive manufacturing, Advanced Drug Delivery Reviews, 173, 349-373, 2021.
  • 19. Tianying H., Shengfu Y., Anguo H., Guozhi Y., Path planning and forming of wire multi-arc additive collaborative manufacture for marine propeller bracket, 68, 1191-1201, 2021.
  • 20. Pajonk A., Prieto A., Blum U., Knaack U., Multi-material additive manufacturing in architecture and construction: A review, Journal of Building Engineering, 45, 103603, 2022.
  • 21. Zhang F., Wei M., Viswanathan V.V., Swart B., Shao Y., Wu G., Zhou C., 3D printing technologies for electrochemical energy storage, Nano Energy, 40, 418-431, 2017.
  • 22. Awasthi P., Banerjee S.S., Fused deposition modeling of thermoplastic elastomeric materials: challenges and opportunities, Additive Manufacturing, 46, 102177, 2021.
  • 23. Ergene, B. Experimental research on mechanical behaviors of additively manufactured cellular structures from titanium and polymer based materials, PhD Thesis, Mechanical Engineering Department, Isparta University of Applied Sciences, Isparta-Turkey, 2020.
  • 24. Li C., Shi X.J., Tuo X.H., Gong Y.M., Guo J., Study on the Relationship between the Bonding Surface and Mechanical Properties of PLA/Epoxy Laminated Composites, International Polymer Processing, 36 (4), 410-416, 2021.
  • 25. Kallel A., Koutiri I., Babaeitorkamani E., Khavandi A., Tamizifar M., Shirinbayan M., Tcharkhtci A., Study of Bonding Formation between the Filaments of PLA in FFF Process, International Polymer Processing, 34 (4), 434-444, 2019.
  • 26. Vicent A.C., Tambuwala M.M., Hassan S.S., Barh D., Aljabali A.A.A., Birkett M., Arjunan A., Aroca A.S., Fused deposition modelling: Current status, methodology, applications and future prospects, Additive Manufacturing, 47, 102378, 2021.
  • 27. Subbarao C.V., Reddy Y.S., Inturi V., Reddy M.I., Dynamic mechanical analysis of 3D printed PETG material, IOP Conf. Ser. Mater. Sci. Eng., 1057, 012031, 2021.
  • 28. Kovacova M., Kozakovicova J., Prochazka M., Janigova I., Vysopal M., Cernickova I., Krajcovic J., Spitalský Z., Novel hybrid PETG composites for 3D printing, Appl. Sci. 10, 3062, 2020.
  • 29. Gordeev E.G., Degtyareva E.S., Ananikov V.P., Zelinsky N.D., Analysis of 3D Printing Possibilities for the Development of Practical Applications in Synthetic Organic Chemistry, Russian Chemical Bulletin, 65, 1637-1643, 2016.
  • 30. Haffner M., Quinn A., Hsieh T.Y., Strong E.B., Steele T., Optimization of 3D print material for the recreation of patient-specific temporal bone models, Ann. Otol. Rhinol. Laryngol., 127, 338–343, 2018.
  • 31. Capel A.J., Rimington R.P., Lewis M.P., Christie S.D.R., 3D printing for chemical, pharmaceutical and biological applications, Nat. Rev. Chem., 2, 422–436, 2018.
  • 32. Redaelli D.F., Abbate V., Storm F.A., Ronca A., Sorrentino A., Capitani C.D., Biffi E., Ambrosio L., Colombo G., Fraschini P., 3D printing orthopedic scoliosis braces: a test comparing FDM with thermoforming, Int. J. Adv. Manuf. Technol., 111, 1707–1720, 2020.
  • 33. Srinivasan R., Prathap P., Raj A., Kannan S.A., Deepak V., Influence of fused deposition modeling process parameters on the mechanical properties of PETG parts, Materialstoday: Proceedings, 27 (2), 1877-1883, 2020.
  • 34. Singh D., Reddy A.R., Arjula S., Characterization of Additive Manufactured PETG and Carbon Fiber-PETG, Int., J. Res. Appl. Manag., 4 (2), 152-156, 2018.
  • 35. Yadav D., Chhabra D., Garg R.K., Ahlawat A., Phogat A., Optimization of FDM 3D printing process parameters for multi-material using artificial neural network, Materialstoday: Proceedings, 21 (3), 1583-1591, 2020.
  • 36. Durgashyam K., Reddy M.I., Balakrishna A., Satyanarayana, K., Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method, Materialstoday: Proceedings, 18 (6), 2052-2059, 2019.
  • 37. Szykiedans K., Credo W., Osinski D., Selected mechanical properties of PETG 3-D prints, Procedia Engineering, 177, 455-461, 2017.
  • 38. Srinivasan R., Kumar K.N., Ibrahim A.J., Anandu K.V., Gurudhevan R., Impact of fused deposition process parameter (infill pattern) on the strength of PETG part, Materialstoday: Proceedings, 27 (2), 1801-1805, 2020.
  • 39. Hsueh M.H., Lai C.J., Wang S.H., Zeng Y.S., Hsieh C.H., Pan C.Y., Huang W.C., Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling, Polymers, 13 (11), 1758, 2021.
  • 40. Santos F.A., Rebelo H., Coutinho M., Sutherland L.S., Cismasiu C., Farina I., Fraternali F., Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg, Composite Structures, 256, 113128, 2021.
  • 41. Dolzyk G., Jung S., Tensile and fatigue analysis of 3d-printed polyethylene terephthalate glycol, J Fail Anal Prev., 19, 511-518, 2019.
  • 42. Guessasma S., Belhabib S., Nouri H., Printability and tensile performance of 3d printed polyethylene terephthalate glycol using fused deposition modelling. Polymers, 11 (7), 1220, 2019.
  • 43. Tezel T., Ozenc M., Kovan V., Impact properties of 3D-printed engineering polymers, Materialstoday: Communications, 26, 102161, 2021.
  • 44. Creality Products, https://www.creality.com/goods-detail/ender-3-3d-printer?gclid=Cj0KCQiAxc6PBhCEARIsAH8Hff2HYmFEgz2bAm2nX4qfPmNysIV_YEczQCcNaK4DC66IOy8qMt8GNh4aAk1nEALw_wcB, 3 January 2022.
  • 45. ASTM D638-14, Standard test method for tensile properties of plastics. Technical Report. West Conshohocken, PA; 2014.
  • 46. ASTM International, ASTM D2240-15e1, Standard Test Method for Rubber Property—Durometer Hardness. 2015.
  • 47. Singh S., Ramakrishna S., Singh R., Material issues in additive manufacturing: a review, Journal of Manufacturing Process, 25, 185–200, 2017.
  • 48. Gurrala P.K., Regalla S.P., Part strength evolution with bonding between filaments in fused deposition modelling, Virtual Phys Prototyp., 9, 141–149, 2014.
  • 49. Rebelo H.M.B., Development and study of a high performance protective solution against blast loads, PhD Thesis, UNL-FCT, 2020.
  • 50. Shubham P., Sikidar A., Chand T., The Influence of Layer Thickness on Mechanical Properties of the 3D Printed ABS Polymer by Fused Deposition Modeling, Key Engineering Materials, 706, 63-67, 2016.
  • 51. Kumar M.A., Khan M.S., Mishra S.B., Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics, Materialstoday: Proceedings, 27 (2), 975-983, 2020.
  • 52. Kabir S.M.F., Mathur K., Seyam A.F.M., Impact resistance and failure mechanism of 3D printed continuous fiber-reinforced cellular composites, The Journal of The Textile Institute, 112 (5), 752-766, 2020.
  • 53. Ruiz-Herrero J., Rodriguez-Perez M., Saja, J.D., Design and construction of an instrumented falling weight impact tester to characterise polymer-based foams, Polymer Testing, 24 (5), 641–647, 2005.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berkay Ergene 0000-0001-6145-1970

Hasan Ispartalı Bu kişi benim 0000-0001-7180-7264

Uçan Karakılınç Bu kişi benim 0000-0001-7782-3580

Proje Numarası -
Yayımlanma Tarihi 6 Ocak 2023
Gönderilme Tarihi 30 Ocak 2022
Kabul Tarihi 3 Haziran 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Ergene, B., Ispartalı, H., & Karakılınç, U. (2023). Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1345-1360. https://doi.org/10.17341/gazimmfd.1065131
AMA Ergene B, Ispartalı H, Karakılınç U. Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı. GUMMFD. Ocak 2023;38(3):1345-1360. doi:10.17341/gazimmfd.1065131
Chicago Ergene, Berkay, Hasan Ispartalı, ve Uçan Karakılınç. “Eriyik yığma Modelleme Ile üretilen PET-G parçaların Katman yüksekliğine Ve Test sıcaklığına bağlı Darbe davranışı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 3 (Ocak 2023): 1345-60. https://doi.org/10.17341/gazimmfd.1065131.
EndNote Ergene B, Ispartalı H, Karakılınç U (01 Ocak 2023) Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1345–1360.
IEEE B. Ergene, H. Ispartalı, ve U. Karakılınç, “Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı”, GUMMFD, c. 38, sy. 3, ss. 1345–1360, 2023, doi: 10.17341/gazimmfd.1065131.
ISNAD Ergene, Berkay vd. “Eriyik yığma Modelleme Ile üretilen PET-G parçaların Katman yüksekliğine Ve Test sıcaklığına bağlı Darbe davranışı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (Ocak 2023), 1345-1360. https://doi.org/10.17341/gazimmfd.1065131.
JAMA Ergene B, Ispartalı H, Karakılınç U. Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı. GUMMFD. 2023;38:1345–1360.
MLA Ergene, Berkay vd. “Eriyik yığma Modelleme Ile üretilen PET-G parçaların Katman yüksekliğine Ve Test sıcaklığına bağlı Darbe davranışı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 3, 2023, ss. 1345-60, doi:10.17341/gazimmfd.1065131.
Vancouver Ergene B, Ispartalı H, Karakılınç U. Eriyik yığma modelleme ile üretilen PET-G parçaların katman yüksekliğine ve test sıcaklığına bağlı darbe davranışı. GUMMFD. 2023;38(3):1345-60.