Identification of adaptive optics system model with extended data set
Yıl 2024,
, 1825 - 1836, 20.05.2024
Bilal Erol
,
İhsan Berk Altıner
Akın Delibaşı
Öz
Deformable mirrors are the main component of adaptive optics systems and efficiently used to correct wavefront aberrations. The high-fidelity modelling of the deformable mirror should be obtained to analyze its performance and control it. In this study, the Hadamard pattern which provides fundamental inputs for system identification of adaptive optics systems, is augmented with the Zernike wavefront aberration modes and tested on adaptive optics test-bench in Hardware-in-the-loop testing (HIL). The success of the proposed pattern is shown on the experimental setup by comparing existing input patterns in the literature.
Kaynakça
- [1] Kolmogorov A. N., Dissipation of energy in the locally isotropic turbulence, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434 (1890), 15–17, 1991.
- [2] Noll R. J., Zernike polynomials and atmospheric turbulence, JOsA, 66 (3), 207–211, 1976.
- [3] Baudouin L., Prieur C., Guignard F., Arzelier D., Control of adaptive optics system: an H_∞ approach., IFAC Proceedings Volumes, 41 (2), 13408–13413, 2008.
- [4] Hu L., Hu S., Gong W., Si K., Learning- based shack-hartmann wavefront sensor for high-order aberration detection, Optics express, 27 (23), 33504–33517, 2019.
- [5] Akyol, E., Hagag, A. M., Sivaprasad, S., Lotery, A. J., Adaptive optics: principles and applications in ophthalmology. Eye, 35(1), 244-264, 2021.
- [6] Subaşı, Ö., Erol, B., Altıner, B., Turan, H., Baci, N., H_∞ controller design for the mitigation of atmospheric effects on the laser beam pointing. Transactions of the Institute of Measurement and Control, 43(8), 1786-1801, 2021.
- [7] Lakshminarayanan, V., & Fleck, A., Zernike polynomials: a guide. Journal of Modern Optics, 58(7), 545-561, 2011.
- [8] Kasper, M., Looze, D. P., Hippler, S., Herbst, T., Glindemann, A., Ott, T., Wirth, A., ALFA: adaptive optics for the calar alto observatory optics, control systems, and performance. Experimental Astronomy, 10(1), 49-73, 2000.
- [9] Kasper, M., Fedrigo, E., Looze, D. P., Bonnet, H., Ivanescu, L., Oberti, S., Fast calibration of high-order adaptive optics systems. JOSA A, 21(6), 1004-1008, 2004.
- [10] Meimon, S., Petit, C., Fusco, T., Optimized calibration strategy for high order adaptive optics systems in closed-loop: the slope-oriented Hadamard actuation. Optics express, 23(21), 27134-27144, 2015.
- [11] Guo, Y., Rao, C., Bao, H., Zhang, A., Zhang, X., Wei, K., Multichannel-Hadamard calibration of high-order adaptive optics systems. Optics express, 22(11), 13792-13803, 2014.
- [12] Vogel, C., Tyler, G., Lu, Y., Bifano, T., Conan, R., Blain, C., Modeling and parameter estimation for point-actuated continuous-facesheet deformable mirrors. JOSA A, 27(11), A56-A63, 2010.
- [13] Brenner, J., Cummings, L., The Hadamard maximum determinant problem. The American Mathematical Monthly, 79(6), 626-630, 1972.
- [14] Kulcsár, C., Raynaud, H. F., Petit, C., Conan, J. M., Minimum variance prediction and control for adaptive optics. Automatica, 48(9), 1939-1954, 2012.
- [15] Geary, J. M. (1995). Introduction to wavefront sensors, Spie Press, Washington, A.B.D., 1995.
Genişletilmiş veri kümesi ile uyarlamalı optik sistemlerin modelinin kestirimi
Yıl 2024,
, 1825 - 1836, 20.05.2024
Bilal Erol
,
İhsan Berk Altıner
Akın Delibaşı
Öz
Deforme edilebilen aynalar, uyarlamalı optik sistemlerin ana bileşeni olup, optik fenomenlerden kaynaklı dalga cephesi bozulmalarını düzeltmede kullanılan etkili cihazlardır. Birçok uygulamada kullanılan uyarlamalı optik sistemlerin, performans analizleri ve model tabanlı kontrolleri için gerçek sisteme yüksek benzerlikteki modellerinin elde edilmesi gerekmektedir. Bu çalışmada, bu amaç doğrultusunda literatürde bu alanda geliştirilen sistem tanıma tekniklerinden olan Hadamard tahrik şablonu çeşitli Zernike optik bozulma modlarından oluşan şablonlarla genişletilerek, laboratuvar ortamında kurulan uyarlamalı optik Döngüde Donanım Simülasyonu (HIL) üzerinde test edilmiştir. Önerilen tekniğin başarısı kabul gören benzerlik metriği kullanılarak yine HIL üzerinde gösterilmiştir.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma, TÜBİTAK 1001 Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı kapsamında 118E224 numaralı proje ile desteklenmiş olup, yazarlar bu destek için TÜBİTAK’a teşekkür eder.
Kaynakça
- [1] Kolmogorov A. N., Dissipation of energy in the locally isotropic turbulence, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434 (1890), 15–17, 1991.
- [2] Noll R. J., Zernike polynomials and atmospheric turbulence, JOsA, 66 (3), 207–211, 1976.
- [3] Baudouin L., Prieur C., Guignard F., Arzelier D., Control of adaptive optics system: an H_∞ approach., IFAC Proceedings Volumes, 41 (2), 13408–13413, 2008.
- [4] Hu L., Hu S., Gong W., Si K., Learning- based shack-hartmann wavefront sensor for high-order aberration detection, Optics express, 27 (23), 33504–33517, 2019.
- [5] Akyol, E., Hagag, A. M., Sivaprasad, S., Lotery, A. J., Adaptive optics: principles and applications in ophthalmology. Eye, 35(1), 244-264, 2021.
- [6] Subaşı, Ö., Erol, B., Altıner, B., Turan, H., Baci, N., H_∞ controller design for the mitigation of atmospheric effects on the laser beam pointing. Transactions of the Institute of Measurement and Control, 43(8), 1786-1801, 2021.
- [7] Lakshminarayanan, V., & Fleck, A., Zernike polynomials: a guide. Journal of Modern Optics, 58(7), 545-561, 2011.
- [8] Kasper, M., Looze, D. P., Hippler, S., Herbst, T., Glindemann, A., Ott, T., Wirth, A., ALFA: adaptive optics for the calar alto observatory optics, control systems, and performance. Experimental Astronomy, 10(1), 49-73, 2000.
- [9] Kasper, M., Fedrigo, E., Looze, D. P., Bonnet, H., Ivanescu, L., Oberti, S., Fast calibration of high-order adaptive optics systems. JOSA A, 21(6), 1004-1008, 2004.
- [10] Meimon, S., Petit, C., Fusco, T., Optimized calibration strategy for high order adaptive optics systems in closed-loop: the slope-oriented Hadamard actuation. Optics express, 23(21), 27134-27144, 2015.
- [11] Guo, Y., Rao, C., Bao, H., Zhang, A., Zhang, X., Wei, K., Multichannel-Hadamard calibration of high-order adaptive optics systems. Optics express, 22(11), 13792-13803, 2014.
- [12] Vogel, C., Tyler, G., Lu, Y., Bifano, T., Conan, R., Blain, C., Modeling and parameter estimation for point-actuated continuous-facesheet deformable mirrors. JOSA A, 27(11), A56-A63, 2010.
- [13] Brenner, J., Cummings, L., The Hadamard maximum determinant problem. The American Mathematical Monthly, 79(6), 626-630, 1972.
- [14] Kulcsár, C., Raynaud, H. F., Petit, C., Conan, J. M., Minimum variance prediction and control for adaptive optics. Automatica, 48(9), 1939-1954, 2012.
- [15] Geary, J. M. (1995). Introduction to wavefront sensors, Spie Press, Washington, A.B.D., 1995.