Araştırma Makalesi
BibTex RIS Kaynak Göster

Computational fluid dynamics study of lift enhancement on a NACA0012 airfoil using a synthetic jet actuator

Yıl 2023, , 1821 - 1838, 06.01.2023
https://doi.org/10.17341/gazimmfd.1132881

Öz

In this study, a loudspeaker type synthetic jet actuator (SJA) is scrutinized in two dimensional numerical analysis. It is aimed to find which frequency and jet orifice diameter of SJA should be to enhance aerodynamics characteristics of the airfoil. Computational fluid dynamics (CFD) methods are employed in ANSYS Fluent flow solver module according to Reynolds Averaged Navier-Stokes (RANS) and Unsteady RANS (URANS) equations with SST k-ω turbulence model closure. RANS solutions are employed in grid convergence index CFD analysis and SJE-off configuration CFD analysis whereas URANS solutions are employed in the rest of the analysis. As the result of grid convergence index test, Mesh4 with 34700 element number is selected as the most suitable one according to lift and drag coefficient calculations. CFD analysis are employed at various angles of attacks and Reynolds numbers at 1500-to-2200 Hz and 1mm-to-3mm orifice diameter configurations compared to selected reference studies and lift coefficient is investigated for both SJA-off and SJA-on cases of the airfoil. Lastly, CL and lift-to-drag ratio (CL/CD) enhancement by SJA at this configuration. According to the results, these coefficients effectively increased at low and moderate Reynolds numbers.

Kaynakça

  • Huebsch W.W., Gall P.D., Hamburg S.D., Rothmayer A.P., Dynamic roughness as a means of leading-edge separation flow control. J. of Aircraft, 49 (1), 108-115, 2012.
  • Çelik B., Edis F.O., Mısırlıoğlu A., Şekil değiştiren bir ağ üzerinde CBS sonlu elemanlar metodu kullanılarak sentetik mikro jet akışı analizi, XIII. Ulusal Mekanik Kongresi, Gaziantep-Türkiye, 311-319, 8-12 Eylül, 2003.
  • Niel F., Modeling and control of a wing at low Reynolds number with high amplitude aeroelastic oscillations, Doktora Tezi, Institut Supérieur de l'Aéronautique et de l'Espace, Toulouse, Fransa, 2018.
  • Deb D., Tao G., Burkholder J.O., Smith D.R., An adaptive inverse control scheme for a synthetic jet actuator model, 2005 American Control Conference, Portland-ABD, 2646-2651, 8-10 Haziran, 2005.
  • Tesař V., Hung C.H., Zimmerman W.B., No-moving-part hybrid-synthetic jet actuator. Sens. Actuators, A, 125 (2), 159-169, 2006.
  • Tesař V., Mechanism of pressure recovery in jet-type actuators. Sens. Actuators, A, 152 (2), 182-191, 2009.
  • Zhong, S., Jabbal, M., Tang, H., Garcillan, L., Guo, F., Wood, N., & Warsop, C. (2007). Towards the design of synthetic-jet actuators for full-scale flight conditions. Flow, turbulence and combustion, 78(3), 283-307.
  • Deb, D., Tao, G., Burkholder, J. O., & Smith, D. R. (2008). Adaptive synthetic jet actuator compensation for a nonlinear aircraft model at low angles of attack. IEEE Transactions on Control Systems Technology, 16(5), 983-995.
  • Amitay M., Smith B., Glezer A., Aerodynamic flow control using synthetic jet technology, 36. AIAA Aerospace Sciences Meeting and Exhibit, Reno-ABD, 208, 12-15 Ocak, 1998.
  • Mallinson S.G., Reizes J.A. Hong, G., An experimental and numerical study of synthetic jet flow. Aeronaut. J., 105 (1043), 41-49, 2001.
  • Ugrina S., Experimental analysis and analytical modeling of synthetic jet-cross flow interactions, Doktora Tezi, University of Maryland, College Park, ABD, 2007.
  • Raju R., Mittal R., Cattafesta L., Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA J., 46, No. 12, 2008.
  • You D., Moin P., Study of flow separation over an airfoil with synthetic jet control using Large-Eddy simulation. Center for Turbulent Research - Annual Research Briefs, 311-321, 2007.
  • Jain M., Puranik B., Agrawal A., A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow. Sens. Actuators, A, 165 (2), 351-366, 2011.
  • Lv Y.W., Zhang J.Z., Shan Y., Tan X.M., Numerical investigation for effects of actuator parameters and excitation frequencies on synthetic jet fluidic characteristics. . Sens. Actuators, A, 219, 100-111, 2014.
  • Macovei A.C. ve Frunzulica F., Numerical simulations of synthetic jets in aerodynamic applications. Incas Bulletin, 6, 81, 2014.
  • Gil P. ve Strzelczyk P., Performance and efficiency of loudspeaker driven synthetic jet actuator. Exp. Therm Fluid Sci., 76, 163-174, 2016.
  • Boualem K., Yahiaoui T., Azzi A., Numerical investigation of improved aerodynamic performance of a NACA 0015 airfoil using synthetic jet. International Journal of Mechanical and Mechatronics Engineering, 11 (3), 498-502, 2017.
  • Eglinger E., Ternoy F., Dandois J., Aigouy G., Betsch E., Jaussaud G., Claeyssen F., 2018, High-performance synthetic jet actuator for aerodynamic flow improvement over airplane wings, Actuator 2018: 16. International Conference on New Actuators, Bremen-Almanya, 1-4, 25-27 Haziran 2018.
  • Obeid S., Ahmadi G. Jha R., 2020, NARMAX identification based closed-loop control of flow separation over NACA 0015 airfoil. Fluids, 5 (3), 100, 2020.
  • Palumbo A., de Luca L., Experimental and CFD characterization of a double-orifice synthetic jet actuator for flow control, Actuators, 10 (12), 326, 2021.
  • Abdelraouf H., Elmekawy A.M.N., Kassab S.Z., Simulations of flow separation control numerically using different plasma actuator models. Alexandria Eng. J. , 59 (5), 3881-3896, 2020.
  • Vaddi R.S., Sota C., Mamishev A., Novosselov I., Active flow control of NACA0012 airfoil using sawtooth direct current augmented dielectric barrier discharge plasma actuator. arXiv preprint arXiv:2106.11453, 2021.
  • Castaneda D., Whiting N., Webb N.J., Samimy M., Design and characterization of an experimental setup for active control of dynamic stall over a NACA0012 airfoil, AIAA Aviation 2019 Forum, Dallas-ABD, 3212, 17-21 Haziran, 2019.
  • Durasiewicz C., Singh A., Little J.C., A comparative flow physics study of NS-DBD vs AC-DBD plasma actuators for transient separation control on a NACA0012 airfoil, 2018 AIAA Aerospace Sciences Meeting, Florida-ABD, 1061, 8-12 Ocak, 2018.
  • Duvigneau R., Hay A., Visonneau M., Study on the optimal location of a synthetic jet for stall control, 3. AIAA Flow Control Conference, Atlanta-ABD, 3679, 25-29 Haziran, 2006.
  • Nae, C., Synthetic jets influence on NACA0012 airfoil at high angles of attack, 23. Atmospheric Flight Mechanics Conference, Boston-ABD, 4523, 10-13 Ağustos, 2009.
  • Yousefi K., Saleh R., Zahedi P., Numerical study of blowing and suction slot geometry optimization on NACA0012 airfoil, J. Mech. Sci. Technol., 28 (4), 1297-1310, 2014.
  • Luo D.H., Sun X.J., Huang D.G., Wu G.Q., Flow control effectiveness of synthetic jet on a stalled airfoil, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 225 (9), 2106-2114, 2011.
  • AURA Sound. Engineering test specification. http://www.madisound.com/pdf/aurasound/NS3-193-8-S43.pdf. Yayın tarihi Eylül 19, 2002. Erişim tarihi Haziran 11, 2022.
  • ANSYS Fluent. Theory Guide. https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Theory_Guide.pdf. Yayın tarihi Temmuz 2022. Erişim tarihi Temmuz 28, 2022.
  • ANSYS Fluent. Customization Manual. https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_UDF_Manual.pdf. Yayın tarihi Temmuz 2022. Erişim tarihi Temmuz 28, 2022.
  • Roache P.J., Perspective: a method for uniform reporting of grid refinement studies, ASME J. Fluids Eng., 116 (3), 405–13, 1994.
  • Wu K., Zhang G., Kim T.H., Kim H.D., Numerical parametric study on three-dimensional rectangular counter-flow thrust vectoring control, Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 234 (16), 2221-2247, 2020.
  • Roache P.J., Verification of codes and calculations, AIAA J., 36 (5), 696-702, 1998.
  • ANSYS Fluent. User’s Guide. https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Users_Guide.pdf. Yayın tarihi Temmuz 2022. Erişim tarihi Temmuz 28, 2022.
  • Çanlıoğlu İ.E., Kara E., 2021, Computational Fluid Dynamics study of lift enhancement on a NACA 0012 airfoil using a synthetic jet actuator, Uluslararası Katılımlı 23. Isı Bilimi ve Tekniği Kongresi, Gaziantep-Türkiye, 396-405, 8-10 Eylül 2021.
  • Çanlıoğlu İ.E., Computational Fluid Dynamics analysis of recent synthetic jet actuator designs, Yüksek Lisans Tezi, Gaziantep Üniversitesi, Fen Bilimleri Enstitüsü, Gaziantep, 2021.

Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması

Yıl 2023, , 1821 - 1838, 06.01.2023
https://doi.org/10.17341/gazimmfd.1132881

Öz

Bu çalışmada, hoparlör tipi sentetik jet eyleyici (SJE) kullanarak iki boyutlu sayısal analizler yapılmıştır. Kanat profilinin aerodinamik özelliklerini geliştirmek için SJE'nin hangi frekans ve jet orifis çapında olması gerektiğinin bulunması amaçlanmıştır. Hesaplamalı akışkanlar dinamiği (HAD) metodu, ANSYS Fluent akış çözücü modülünde, SST k-ω türbülans modeliyle Reynolds ortalamalı Navier-Stokes (RANS) ve daimi olmayan RANS (URANS) denklemlerinde göre kullanılmıştır. Ağ yakınsama indeksi testi HAD analizlerinde ve SJE-kapalı konfigürasyon çalışmasının HAD analizlerinde RANS, diğer tüm analizlerde URANS çözümleri yapılmıştır. Ağ yakınsama indeksi testi sonucunda, düğüm sayısının 34700 olduğu Mesh4 isimli ağ yapısı hem kaldırma hem de direnç katsayısı hesabına göre en uygun ağ yapısı olarak seçilmiştir. Seçilen referans çalışmalara göre farklı açı ve Reynolds sayılarında, 1500’den 2200 Hz’e frekans ve 1 mm’den 3 mm’ye orifis çapı değerlerinde HAD analizleri yapılmış, kaldırma katsayısı SJE-kapalı ve SJE-açık durumlarında kanat profili üzerinde incelenmiştir. Son olarak, SJE tarafından CL ve kaldırma-direnç oranı (CL/CD) iyileştirmesi farklı konfigürasyonlar altında karşılaştırılmıştır. Sonuçlara göre bu katsayılar, düşük ve orta değerlerdeki Reynolds sayılarında etkili bir şekilde artmıştır.

Kaynakça

  • Huebsch W.W., Gall P.D., Hamburg S.D., Rothmayer A.P., Dynamic roughness as a means of leading-edge separation flow control. J. of Aircraft, 49 (1), 108-115, 2012.
  • Çelik B., Edis F.O., Mısırlıoğlu A., Şekil değiştiren bir ağ üzerinde CBS sonlu elemanlar metodu kullanılarak sentetik mikro jet akışı analizi, XIII. Ulusal Mekanik Kongresi, Gaziantep-Türkiye, 311-319, 8-12 Eylül, 2003.
  • Niel F., Modeling and control of a wing at low Reynolds number with high amplitude aeroelastic oscillations, Doktora Tezi, Institut Supérieur de l'Aéronautique et de l'Espace, Toulouse, Fransa, 2018.
  • Deb D., Tao G., Burkholder J.O., Smith D.R., An adaptive inverse control scheme for a synthetic jet actuator model, 2005 American Control Conference, Portland-ABD, 2646-2651, 8-10 Haziran, 2005.
  • Tesař V., Hung C.H., Zimmerman W.B., No-moving-part hybrid-synthetic jet actuator. Sens. Actuators, A, 125 (2), 159-169, 2006.
  • Tesař V., Mechanism of pressure recovery in jet-type actuators. Sens. Actuators, A, 152 (2), 182-191, 2009.
  • Zhong, S., Jabbal, M., Tang, H., Garcillan, L., Guo, F., Wood, N., & Warsop, C. (2007). Towards the design of synthetic-jet actuators for full-scale flight conditions. Flow, turbulence and combustion, 78(3), 283-307.
  • Deb, D., Tao, G., Burkholder, J. O., & Smith, D. R. (2008). Adaptive synthetic jet actuator compensation for a nonlinear aircraft model at low angles of attack. IEEE Transactions on Control Systems Technology, 16(5), 983-995.
  • Amitay M., Smith B., Glezer A., Aerodynamic flow control using synthetic jet technology, 36. AIAA Aerospace Sciences Meeting and Exhibit, Reno-ABD, 208, 12-15 Ocak, 1998.
  • Mallinson S.G., Reizes J.A. Hong, G., An experimental and numerical study of synthetic jet flow. Aeronaut. J., 105 (1043), 41-49, 2001.
  • Ugrina S., Experimental analysis and analytical modeling of synthetic jet-cross flow interactions, Doktora Tezi, University of Maryland, College Park, ABD, 2007.
  • Raju R., Mittal R., Cattafesta L., Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA J., 46, No. 12, 2008.
  • You D., Moin P., Study of flow separation over an airfoil with synthetic jet control using Large-Eddy simulation. Center for Turbulent Research - Annual Research Briefs, 311-321, 2007.
  • Jain M., Puranik B., Agrawal A., A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow. Sens. Actuators, A, 165 (2), 351-366, 2011.
  • Lv Y.W., Zhang J.Z., Shan Y., Tan X.M., Numerical investigation for effects of actuator parameters and excitation frequencies on synthetic jet fluidic characteristics. . Sens. Actuators, A, 219, 100-111, 2014.
  • Macovei A.C. ve Frunzulica F., Numerical simulations of synthetic jets in aerodynamic applications. Incas Bulletin, 6, 81, 2014.
  • Gil P. ve Strzelczyk P., Performance and efficiency of loudspeaker driven synthetic jet actuator. Exp. Therm Fluid Sci., 76, 163-174, 2016.
  • Boualem K., Yahiaoui T., Azzi A., Numerical investigation of improved aerodynamic performance of a NACA 0015 airfoil using synthetic jet. International Journal of Mechanical and Mechatronics Engineering, 11 (3), 498-502, 2017.
  • Eglinger E., Ternoy F., Dandois J., Aigouy G., Betsch E., Jaussaud G., Claeyssen F., 2018, High-performance synthetic jet actuator for aerodynamic flow improvement over airplane wings, Actuator 2018: 16. International Conference on New Actuators, Bremen-Almanya, 1-4, 25-27 Haziran 2018.
  • Obeid S., Ahmadi G. Jha R., 2020, NARMAX identification based closed-loop control of flow separation over NACA 0015 airfoil. Fluids, 5 (3), 100, 2020.
  • Palumbo A., de Luca L., Experimental and CFD characterization of a double-orifice synthetic jet actuator for flow control, Actuators, 10 (12), 326, 2021.
  • Abdelraouf H., Elmekawy A.M.N., Kassab S.Z., Simulations of flow separation control numerically using different plasma actuator models. Alexandria Eng. J. , 59 (5), 3881-3896, 2020.
  • Vaddi R.S., Sota C., Mamishev A., Novosselov I., Active flow control of NACA0012 airfoil using sawtooth direct current augmented dielectric barrier discharge plasma actuator. arXiv preprint arXiv:2106.11453, 2021.
  • Castaneda D., Whiting N., Webb N.J., Samimy M., Design and characterization of an experimental setup for active control of dynamic stall over a NACA0012 airfoil, AIAA Aviation 2019 Forum, Dallas-ABD, 3212, 17-21 Haziran, 2019.
  • Durasiewicz C., Singh A., Little J.C., A comparative flow physics study of NS-DBD vs AC-DBD plasma actuators for transient separation control on a NACA0012 airfoil, 2018 AIAA Aerospace Sciences Meeting, Florida-ABD, 1061, 8-12 Ocak, 2018.
  • Duvigneau R., Hay A., Visonneau M., Study on the optimal location of a synthetic jet for stall control, 3. AIAA Flow Control Conference, Atlanta-ABD, 3679, 25-29 Haziran, 2006.
  • Nae, C., Synthetic jets influence on NACA0012 airfoil at high angles of attack, 23. Atmospheric Flight Mechanics Conference, Boston-ABD, 4523, 10-13 Ağustos, 2009.
  • Yousefi K., Saleh R., Zahedi P., Numerical study of blowing and suction slot geometry optimization on NACA0012 airfoil, J. Mech. Sci. Technol., 28 (4), 1297-1310, 2014.
  • Luo D.H., Sun X.J., Huang D.G., Wu G.Q., Flow control effectiveness of synthetic jet on a stalled airfoil, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 225 (9), 2106-2114, 2011.
  • AURA Sound. Engineering test specification. http://www.madisound.com/pdf/aurasound/NS3-193-8-S43.pdf. Yayın tarihi Eylül 19, 2002. Erişim tarihi Haziran 11, 2022.
  • ANSYS Fluent. Theory Guide. https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Theory_Guide.pdf. Yayın tarihi Temmuz 2022. Erişim tarihi Temmuz 28, 2022.
  • ANSYS Fluent. Customization Manual. https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_UDF_Manual.pdf. Yayın tarihi Temmuz 2022. Erişim tarihi Temmuz 28, 2022.
  • Roache P.J., Perspective: a method for uniform reporting of grid refinement studies, ASME J. Fluids Eng., 116 (3), 405–13, 1994.
  • Wu K., Zhang G., Kim T.H., Kim H.D., Numerical parametric study on three-dimensional rectangular counter-flow thrust vectoring control, Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 234 (16), 2221-2247, 2020.
  • Roache P.J., Verification of codes and calculations, AIAA J., 36 (5), 696-702, 1998.
  • ANSYS Fluent. User’s Guide. https://ansyshelp.ansys.com/Views/Secured/corp/v222/en/pdf/Ansys_Fluent_Users_Guide.pdf. Yayın tarihi Temmuz 2022. Erişim tarihi Temmuz 28, 2022.
  • Çanlıoğlu İ.E., Kara E., 2021, Computational Fluid Dynamics study of lift enhancement on a NACA 0012 airfoil using a synthetic jet actuator, Uluslararası Katılımlı 23. Isı Bilimi ve Tekniği Kongresi, Gaziantep-Türkiye, 396-405, 8-10 Eylül 2021.
  • Çanlıoğlu İ.E., Computational Fluid Dynamics analysis of recent synthetic jet actuator designs, Yüksek Lisans Tezi, Gaziantep Üniversitesi, Fen Bilimleri Enstitüsü, Gaziantep, 2021.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim Efdal Çanlıoğlu 0000-0002-1987-4619

Emre Kara 0000-0002-9282-5805

Yayımlanma Tarihi 6 Ocak 2023
Gönderilme Tarihi 19 Haziran 2022
Kabul Tarihi 27 Ağustos 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çanlıoğlu, İ. E., & Kara, E. (2023). Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1821-1838. https://doi.org/10.17341/gazimmfd.1132881
AMA Çanlıoğlu İE, Kara E. Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması. GUMMFD. Ocak 2023;38(3):1821-1838. doi:10.17341/gazimmfd.1132881
Chicago Çanlıoğlu, İbrahim Efdal, ve Emre Kara. “Sentetik Jet Eyleyici Kullanarak NACA0012 Kanat Profilinde kaldırma Kuvveti iyileştirmesinin Hesaplamalı akışkanlar dinamiği çalışması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 3 (Ocak 2023): 1821-38. https://doi.org/10.17341/gazimmfd.1132881.
EndNote Çanlıoğlu İE, Kara E (01 Ocak 2023) Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1821–1838.
IEEE İ. E. Çanlıoğlu ve E. Kara, “Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması”, GUMMFD, c. 38, sy. 3, ss. 1821–1838, 2023, doi: 10.17341/gazimmfd.1132881.
ISNAD Çanlıoğlu, İbrahim Efdal - Kara, Emre. “Sentetik Jet Eyleyici Kullanarak NACA0012 Kanat Profilinde kaldırma Kuvveti iyileştirmesinin Hesaplamalı akışkanlar dinamiği çalışması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (Ocak 2023), 1821-1838. https://doi.org/10.17341/gazimmfd.1132881.
JAMA Çanlıoğlu İE, Kara E. Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması. GUMMFD. 2023;38:1821–1838.
MLA Çanlıoğlu, İbrahim Efdal ve Emre Kara. “Sentetik Jet Eyleyici Kullanarak NACA0012 Kanat Profilinde kaldırma Kuvveti iyileştirmesinin Hesaplamalı akışkanlar dinamiği çalışması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 3, 2023, ss. 1821-38, doi:10.17341/gazimmfd.1132881.
Vancouver Çanlıoğlu İE, Kara E. Sentetik jet eyleyici kullanarak NACA0012 kanat profilinde kaldırma kuvveti iyileştirmesinin hesaplamalı akışkanlar dinamiği çalışması. GUMMFD. 2023;38(3):1821-38.