Araştırma Makalesi
BibTex RIS Kaynak Göster

Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi

Yıl 2025, , 627 - 638, 16.08.2024
https://doi.org/10.17341/gazimmfd.1385994

Öz

Bu çalışmada polimer molekül ağırlığının, elektrospun yüzeyin morfolojik ve fotokromik özellikleri üzerindeki etkileri incelenmiştir. Bu amaçla hidroliz dereceleri eş değer ancak molekül ağırlıkları farklı olan polivinil alkol (PVA) polimerleri kullanılarak polimer konsantrasyonu %12 olan polimer çözeltileri hazırlanmış ve bu çözeltilere %4 fotokromik madde ilavesi sonrasında elektrospinning işlemi gerçekleştirilmiştir. Fotokromik madde ilaveli çözeltilerin yoğunlukları ölçülmüş ve UV-Vis spektrofotometrik analizleri gerçekleştirilmiştir. Bu çözeltilerden üretilen elektrospun nanokompozit yüzeylerin yapısal, morfolojik ve UV-Vis karakterizasyonları FTIR, FESEM ve UV-Vis spektrofotometre analizlerinden faydalanılarak incelenmiş ve yüzeylerin kalınlıkları ölçülmüştür. Polimer molekül ağırlığı arttıkça ortalama nanolif çapının ve nanokompozit yüzey kalınlığının arttığı, gözenek boyut varyasyonu yüksek ve daha geniş gözenekli elektrospun yüzeylerin üretildiği tespit edilmiştir. Düşük polimer molekül ağırlığına sahip PVA 5-88 numunesinde, düşük vizkosite değerinden dolayı yüzey düzgünsüzlüğünün bozulduğu ve en ince nanolif üretimin bu numune ile elde edildiği gözlenmiştir. Çalışılan numuneler arasında orta molekül ağrılığa sahip olan PVA 14-88 numunesinin ise çözelti yoğunluğu, üretilen ortalama nanolif çapı değeri, lif çapı/gözenek boyutu ilişkisi ve fotokromik etki açısından elektrospinning işlemi için en uygun molekül ağırlığa sahip PVA polimer tipi olduğu görülmektedir.

Etik Beyan

Bu çalışmanın, deneysel verilere dayanan özgün ve orijinal bir çalışma olduğunu, tüm aşamalarının bilimsel etik ilke ve kurallarına uygun yürütüldüğünü, bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için yapılan alıntılara metin içinde ve kaynakçada yer verildiğini; kullanılan verilerde herhangi bir değişiklik yapılmadığını beyan ederim. Bu çalışma orijinal bir araştırma makalesidir ve herhangi başka bir dergi yada yayın evinde değerlendirme yada yayın aşamasında değildir. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi

Proje Numarası

2021/3-25M

Teşekkür

Bu çalışma Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırmalar ve Projeler Birimi tarafından 2021/3-25M proje numarası ile desteklenmiştir.

Kaynakça

  • 1. Ondarcuhu T., Joachim C., Drawing a single nanofibre over hundreds of microns, Europhysics Letters, 42(2), 215-220, 1998.
  • 2. Maiyalagan T., Viswanathan B., Varadaraju U., Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method, Bulletin of Materials Science, 29 (7), 705-708, 2006.
  • 3. Fujihara K., Teo W. E., Lim T. C., Ma Z., An Introduction to Electrospinning and Nanofibers, World Scientific Publishing, Singapore, 2005.
  • 4. Liu G., Ding J., Qiao L., Guo A., Dymov B. P., Gleeson J. T., Hashimoto T., Saijo K., Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers-preparation. characterization. and liquid crystalline properties, Chemistry: A European Journal, 5 (9), 2740-2749, 1999.
  • 5. Akçakoca Kumbasar P., Elemen Morsümbül S., Alır S., Photochromic Nanofibers. Novel Aspects of Nanofibers Linn T. (ed), InTechopen, London, 69-86, 2018.
  • 6. Nasouri K., Haji A., Shoushtari A., Kaflu A., A novel study of electrospun nanofibers morphology as a function of polymer solution properties, Proceedings of the International Conference Nanomaterials: Applications and Properties, 2 (3), 1-4, 2013.
  • 7. Al-Abduljabbar A., Farooq I., Electrospun polymer nanofibers: processing, properties and applications, Polymers, 15 (1), 65, 2023.
  • 8. Patel P., Rodriguez F., Moloney G., N-methyl-2-pyrrolidone as a solvent for poly (vinyl alcohol), Journal of Applied Polymer Science, 23, 2335-2342, 1979.
  • 9. Sapalidis A., Porous polyvinyl alcohol membranes: Preparation methods and applications, Symmetry, 12, 960, 2020.
  • 10. Hassan C.M., Trakampan P., Peppas N.A. (2002). Water Solubility Characteristics of Poly(vinyl alcohol) and Gels Prepared by Freezing/Thawing Processes. Water Soluble Polymers, Amjad Z. (ed), Springer, Boston, 31-40, 2002.
  • 11. DeMerlis C.C., Schoneker D.R., Review of the oral toxicity of polyvinyl alcohol (PVA), Food and Chemical Toxicology, 41, 319-326, 2003.
  • 12. Nihed Ben H., Poly (vinyl alcohol): Review of its promising applications and insights into biodegradation, RSC Advances, 6, 39823-39832, 2016.
  • 13. Julinová M., Vaňharová L., Jurča M., Water-soluble polymeric xenobiotics-Polyvinyl alcohol and polyvinylpyrrolidon-and potential solutions to environmental issues: A brief review, Journal of Environmental Management, 228, 213-222, 2018.
  • 14. [14] Sapalidis A., Sideratou Z., Panagiotaki K.N., Sakellis E., Kouvelos E., Papageorgiou S., Katsaros F., Fabrication of antibacterial poly(vinyl alcohol) nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes, Frontiers in Materials, 5, 11, 2018.
  • 15. Akçakoca Kumbasar E.P., Çay A., Morsunbul S., Voncina B., Color build-up and UV-protection performance of encapsulated photochromic dye-treated coton fabrics, AATCC Journal of Research, 3 (2), 1-7, 2016.
  • 16. Ferrara M., Bengisu M., Materials That Change Color: Smart Materials, Intelligent Design, Springer, Heidelberg, 2014.
  • 17. Billah S.M.R., Christie R.M., Shamey R., Direct coloration of textiles with photochromic dyes. Part 1: Application of spiroindolinonaphthoxazines as disperse dyes to polyester. nylon and acrylic fabrics, Coloration Technology, 124 (4), 223-228, 2008.
  • 18. Litle A.F., Christie R.M., Textile applications of photochromic dyes. Part 2: Factors afecting the photocoloration of textiles screen-printed with commercial photochromic dyes, Coloration Technology, 126 (3), 164-170, 2010.
  • 19. Wang X., Drew C., Lee S.H., Senecal K.J., Kumar J., Samuelson L.A. Electrospun nanofibrous membranes for highly sensitive optical sensors, Nano Letters, 2, 1273-1275, 2002.
  • 20. Ongun M.Z., Ertekin K., Gocmenturk M., Ergun Y., Suslu A. Copper ion sensing with fluorescent electrospun nanofibers, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 177-185, 2012.
  • 21. Syu J.H., Cheng Y.K., Hong W.Y., Wang H.P., Lin Y.C., Meng H.F. Electrospun fibers as a solid-state real-time zinc ion sensor with high sensitivity and cell medium compatibility, Advanced Functional Materials, 23, 1566-1574, 2013.
  • 22. Terra I.A.A., Mercante L.A., Andre R.S., Correa D.S. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing, Biosensors, 7, 61, 2017.
  • 23. Morsümbül S., Akçakoca Kumbasar E. P. Performance Characteristics in textile application of photochromic dye capsules, Textile and Apparel, 32 (2), 155-161, 2022.
  • 24. Seipel S., Yu J., Periyasamy A.P., Viková M., Vik M., Nierstrasz V. Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications, RSC Advances. 8 (50), 28395-28404, 2018.
  • 25. Ahmed H., Abdelrahman M.S., Al-Balakocy N.G. Preparation of photochromic and photoluminescent nonwoven fibrous mat from recycled polyester waste, Journal of Polymers and Environment, 30, 5239-5251, 2022.
  • 26. Chowdhury M., Joshi M., Butola B. Photochromic and thermochromic colorants in textile applications, Journal of Engineered Fibers and Fabrics, 9, 107-123, 2014.
  • 27. Gül A., Tiyek İ., Zor G., Yazici N., Production and characterization of Polyamide 6.6 based nanofiber membranes for filter applications by electrospinning method, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1321-1330, 2023.
  • 28. Khatri Z., Shaikh S., Khatri I., Mayakrishnan G., Kim S., Kim I. S. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning, Applied Surface Science, 342, 64-68, 2015.
  • 29. Park J.H, Seo H., Kim D.I., Choi J.H., Son J.H., Kim J., Moon G.D., Hyun D.C. Gold nanocage-ıncorporated poly(epsilon-caprolactone) (PCL) fibers for chemophotothermal synergistic cancer therapy, Pharmaceutics, 11 (2), 60, 2019.
  • 30. Li X., Zhou J., Wu H., Dai F., Li J., Li Z. Electrospun silk fibroin/polylactic-co-glycolic acid/black phosphorus nanosheets nanofibrous membrane with photothermal therapy potential for cancer, Molecules, 27 (14), 4563, 2022.
  • 31. Pham-Nguyen O.V., Lee J.W., Park Y., Jin S., Kim S.R., Park J. Light-triggered structural modulation of Nanofibrous meshes to promote deep penetration of cultured cells, Macromolecular Bioscience, 22 (7), e2100530, 2022.
  • 32. Wang B., Zhang F., Jiang M., Ye G., Xu J., A novel method to prepare poly(vinyl alcohol) water‐soluble fiber with narrowly dissolving temperature range, Journal of Applied Polymer Science, 125 (4), 2956-2962, 2012.
  • 33. Asy-Syifa N., Kusjuriansah K., Waresindo W., Edikresnha D., Suciati T., Khairurrijal. K. The study of the swelling degree of the pva hydrogel with varying concentrations of PVA, Journal of Physics: Conference Series, 2243 (1), 012053, 2022.
  • 34. Sharma H., Salorkar M., Kondawar S. (2016). H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning, Advanced Materials Proceedings, 2 (1), 61-66, 2016.
  • 35. Aldabib J., Edbeib M. The effects of concentration based on the absorbance form the ultraviolet–visible (UV-VIS) spectroscopy analysis, International Journal of Science Letters, 2 (1), 1-11, 2020.
  • 36. Goyal M.K., Fluid Mechanics and Hydraulic Machines. Prentice Hall India Pvt. Limited. India. 2015.
  • 37. Puttala S., Phankosol S., Techapirom T., Chum-in T., Krisnangkura K., Correlations of dynamics viscosity and kinematic viscosity of fatty acid from Gibbs energy additivity, Journal of Physics: Conference Series, 1144, 012184, 2018.
  • 38. Mwiiri F.K., Daniels R. Influence of PVA molecular weight and concentration on electrospinnability of birch bark extract-loaded nanofibrous scaffolds intended for enhanced wound healing, Molecules, 19, 25 (20), 4799, 2020.
  • 39. Wannatong L., Sirivat A., Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polymer International, 53, 1851-1859, 2004.
  • 40. Çay A., Akkoca Kumbasar E. P., Akduman Ç., Effects of solvent mixtures on the morphology of electrospun thermoplastic polyurethane nanofibres, Tekstil ve Konfeksiyon, 25 (1), 38-46. 2015.
  • 41. Medeiros G.B., Lima F.d.A., de Almeida D.S., Guerra V.G., Aguiar M.L., Modification and functionalization of fibers formed by electrospinning: A Review, Membranes, 12, 861, 2022.
  • 42. Mao Y., Shen W., Wu S., Ge X., Ao F., Ning Y., Luo Y., Liu Z., Electrospun polymers: Using devices to enhance their potential for biomedical applications, Reactive and Functional Polymers, 186, 105568, 2023.
  • 43. Koski A., Yim K., Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning, Materials Letters, 58, 493-497, 2004.
  • 44. Palak H., Güler E., Nofar M., Karagüzel Kayaoğlu B., Effects of D-lactide content and molecular weight on the morphological. thermal. and mechanical properties of electrospun nanofiber polylactide mats, Journal of Industrial Textiles, 51 (2), 3030-3056, 2022.
  • 45. Soliman S., Sant S., Nichol J.W., Khabiry M., Traversa E., Khademhosseini A. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density, Journal of Biomedical Materials Research Part A, 96 (3), 566-574, 2011.
  • 46. Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering C, 28 (4), 539-548, 2008.
  • 47. Serbezeanu D., Vlad-Bubulac T., Onofrei M.D., Doroftei F., Hamciuc C., Ipate A.M. Phosphorylated poly(vinyl alcohol) electrospun mats for protective equipment applications, Nanomaterials (Basel), 12 (15), 2685, 2022.
  • 48. Harahap M., Perangin-Angin Y.A., Purwandari V., Goei R., Tok A.L.Y., Gea S. Acetylated lignin from oil palm empty fruit bunches and its electrospun nanofibres with PVA: Potential carbon fibre precursor, Heliyon, 9 (3), e14556, 2023.
  • 49. Olvera Bernal R.A., Olekhnovich R.O., Uspenskaya M.V. Chitosan/PVA nanofibers as potential material for the development of soft actuators, Polymers, 15 (9), 2037, 2023.
  • 50. Asiri A., Al-Ashwal R.H., Sani M.H., Saidin S. Effects of electrospinning voltage and flow rate on morphology of poly-vinyl alcohol nanofibers, Journal of Physics: Conference Series, 1372 (1), 012035, 2019.
  • 51. Sasipriya K., Rangaraj S., Periasamy P., Venkatachalam R. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up, Materials Research, 16 (4), 824-830, 2013.
  • 52. Alhosseini S., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering, International Journal of Nanomedicine, 7, 25-34, 2012.
  • 53. Hashmi M., Ullah S., Ullah A., Saito Y., Haider M.K., Bie X., Wada K., Kim I.S. Carboxymethyl cellulose (cmc) based electrospun composite nanofiber mats for food packaging, Polymers, 13 (2), 302, 2021.
  • 54. Kim S. Study on the characteristics of the dispersion and conductivity of surfactants for the nanofluids, Nanomaterials (Basel), 12 (9), 1537, 2022.
  • 55. Tan G., Saglam S., Emül E., Erdönmez D., Saglam N. Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications, Turkish Journal of Biology, 40 (3), 643-651, 2016.
  • 56. Abdelghany A., Meikhail M., Abdelraheem G., Badr S., Elsheshtawy N. Lepidium sativum natural seed plant extract in the structural and physical characteristics of polyvinyl alcohol, International Journal of Environmental Studies, 75, 1-13, 2018.
  • 57. Mayerhöfer T.G., Popp J. Beer’s law-why absorbance depends (almost) linearly on concentration, ChemPhysChem, 20 (4), 511-515, 2019.
  • 58. Haider A., Haider S., Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arabian Journal of Chemistry, 11 (8), 1165-1188, 2018.
  • 59. Amariei N., Manea L.R., Bertea A.P., Popa A. The Influence of polymer solution on the properties of electrospun 3D nanostructures, IOP Conference Series: Materials Science and Engineering, 209, 012092, 2017.
  • 60. Anero M., Montallana A., Vasquez M. Fabrication of electrospun poly(vinyl alcohol) nanofibers loaded with zinc oxide particles, Results in Physics, 25, 104223, 2021.
  • 61. Tanski T., Matysiak W., Witek P. UV-Vis analysis of composite polyacrylonitrile/iron oxide nanoparticles thin fibrous mats, Applied Engineering Letters, 2 (1), 54-59, 2017.
  • 62. Zwinkels J. Light, Electromagnetic Spectrum. Encyclopedia of Color Science and Technology. Luo R. (ed) Springer. Berlin. 1-8. 2017.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fonksiyonel Malzemeler, Kompozit ve Hibrit Malzemeler, Polimer Teknolojisi
Bölüm Makaleler
Yazarlar

Hayriye Hale Aygün 0000-0002-2812-8079

Proje Numarası 2021/3-25M
Erken Görünüm Tarihi 22 Temmuz 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 4 Kasım 2023
Kabul Tarihi 4 Mayıs 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Aygün, H. H. (2024). Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 627-638. https://doi.org/10.17341/gazimmfd.1385994
AMA Aygün HH. Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi. GUMMFD. Ağustos 2024;40(1):627-638. doi:10.17341/gazimmfd.1385994
Chicago Aygün, Hayriye Hale. “Fotokromik özellikli PVA Nanokompozit yüzey üretimi Ve Karakterizasyonu: Molekül ağırlığın Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 627-38. https://doi.org/10.17341/gazimmfd.1385994.
EndNote Aygün HH (01 Ağustos 2024) Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 627–638.
IEEE H. H. Aygün, “Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi”, GUMMFD, c. 40, sy. 1, ss. 627–638, 2024, doi: 10.17341/gazimmfd.1385994.
ISNAD Aygün, Hayriye Hale. “Fotokromik özellikli PVA Nanokompozit yüzey üretimi Ve Karakterizasyonu: Molekül ağırlığın Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 627-638. https://doi.org/10.17341/gazimmfd.1385994.
JAMA Aygün HH. Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi. GUMMFD. 2024;40:627–638.
MLA Aygün, Hayriye Hale. “Fotokromik özellikli PVA Nanokompozit yüzey üretimi Ve Karakterizasyonu: Molekül ağırlığın Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 627-38, doi:10.17341/gazimmfd.1385994.
Vancouver Aygün HH. Fotokromik özellikli PVA nanokompozit yüzey üretimi ve karakterizasyonu: Molekül ağırlığın etkisinin incelenmesi. GUMMFD. 2024;40(1):627-38.