Araştırma Makalesi
BibTex RIS Kaynak Göster

Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi

Yıl 2019, Cilt: 34 Sayı: 4, 1679 - 1694, 25.06.2019
https://doi.org/10.17341/gazimmfd.571480

Öz

Kiriş-uç
kütle sistemlerinin dinamik analizi robot kolları ve manipulatörler gibi
mekanik sistemlerin başarılı bir şekilde tasarlanması açısından oldukça
önemlidir. Literatürdeki birçok çalışmada bu sistemlerin serbest titreşimini
analitik olarak çözümlemek için az sayıda değişken kesitli kiriş modeli dikkate
alınmış, çoğunlukla sabit kesitli kiriş modeli kullanılmıştır. Ayrıca, uç
kütlenin noktasal olduğu, kiriş ve uç kütle koordinat merkezlerinin çakışık
olduğu kabul edilmiştir. Mevcut çalışmada burulmaya ve iki farklı düzlemde
eğilmeye maruz, kiriş ve uç kütle merkezlerinin çakışık olmadığı bir sistem ele
alınmış ve serbest titreşim analizi için yarı-nümerik yöntem olan Multi-Step
Diferansiyel Transform Metodu (MDTM) uygulanmıştır. Sistemin doğal frekansları
ve mod şekilleri iki farklı sınır şartı (sol ucun ankastre veya serbest olma
durumu) için elde edilmiştir. Ayrıca, kiriş uzunluğu, uç kütle boyutları, kesit
daralma oranı (taper ratio) gibi parametrelerin doğal frekanslar üzerindeki
etkisi incelenmiştir. Elde edilen sonuçların doğruluğu yaygın bir şekilde
kullanılan sonlu eleman yazılımı (ANSYS) ile karşılaştırılmış ve yeterince
uyumlu olduğu gözlenmiştir.

Kaynakça

  • 1. Boyce W.E., Handelman G.H., Vibration of Rotating Beams with Tip Mass, Journal of Zeitschrift für angewandte Mathematik und Physik ZAMP, 12 (5), 369-392, 1961.
  • 2. Craig R R., Rotating Beam with Tip Mass Analyzed by a Variational Method, Journal of the Acoustical Society of America, 35 (7), 990, 1963.
  • 3. Gürgöze M., Özgür K., Erol H., On the Eigenfrequencies of a Cantilevered Beam with a Tip Mass and In-Span Support, Computers & Structures, 56 (1), 85-92, 1995.
  • 4. Gürgöze M., On the Eigenfrequencies of a Cantilever Beam with Attached Tip Mass and a Spring-Mass System, Journal of Sound and Vibration, 190 (2), 149-162, 1996.
  • 5. Mabie H.H., Rogers C.B., Transverse Vibrations of Tapered Cantilever Beam with End Loads, Journal of the Acoustical Society of America, 36 (3), 463, 1964.
  • 6. Kuo Y.H., Wu T.H., Lee S.Y., Bending Vibrations of a Rotating Non-Uniform Beam with Tip Mass and an Elastically Restrained Root, Computers & Structures, 42 (2), 229-236, 1992.
  • 7. Auciello N.M., Transverse Vibrations of a Linearly Tapered Cantilever Beam with Tip Mass of Rotatory Inertia and Eccentricity, Journal of Sound and Vibration, 194 (1), 25-34, 1996.
  • 8. Auciello N.M., Nole G., Vibrations of a Cantilever Tapered Beam with Varying Section Properties and Carrying a Mass at the free end, Journal of Sound and Vibration, 214 (1), 105-119, 1998.
  • 9. Auciello N.M., Free Vibration of a Restrained Shear-Deformable Tapered Beam with a Tip Mass at its Free End, Journal of Sound and Vibration, 237 (3), 542-549, 2000.
  • 10. Wu J-S., Chen C-T., An Exact Solution for the Natural Frequencies and Mode Shapes of an Immersed Elastically Restrained Wedge Beam Carrying an Eccentric Tip Mass Moment of Inertia, Journal of Sound and Vibration, 286, 549-568, 2005.
  • 11. Boiangiu M., Ceausu V., Untariou C.D., A Transfer Matrix Method for Free Vibration Analysis of Euler-Bernoulli Beams with Variable Cross Section, Journal of Vibration of Control, 22 (11), 2591-2602, 2014.
  • 12. Yang K.Y., The Natural Frequencies of a Non-Uniform Beam with a Tip Mass and With Translational and Rotational Springs, Journal of Sound and Vibration, 137 (2), 339-341, 1990.
  • 13. Tang H-L., Shen Z-B., Li D-K., Vibration of Nonuniform Carbon Nanotube with Attached Mass via Nonlocal Timoshenko Beam Theory, 28 (9), 3741-3747, 2014.
  • 14. Hoa S.V., Vibration of a Rotating Beam with Tip Mass, Journal of Sound and Vibration, 67 (3), 369-381, 1979.
  • 15. Oguamanam D.C.D., Free Vibration of Beams with Finite Mass Rigid Tip Load and Flexural-Torsional Coupling, International Journal of Mechanical Science, 45, 963-979, 2003.
  • 16. Gökdağ H., Kopmaz O., Coupled Bending and Torsional Vibration of a Beam with in-span and tip attachments, Journal of Sound and Vibration, 287, 591-610, 2005.
  • 17. Oguamanam, D.C.D., Arshad, M., On the Natural Frequencies of a Flexible Manipulator with a Tip Load, Proceedings of the Institution of Mechanical Engineers, 219, 1199-1205, 2005.
  • 18. Salarieh H., Ghorashi M., Free Vibration of Timoshenko Beam with Finite Mass Rigid Tip Load and Flexural-Torsional Coupling, International Journal of Mechanical Science, 48, 763-779, 2006.
  • 19. Vakil M., Sharbati E., Vakil A., Heidari F., Fotouhi R., Vibration Analysis of a Timoshenko Beam on a Moving Base, Journal of Vibration and Control, 21 (6), 1068-1085, 2013.
  • 20. Ansari M., Esmailzadeh E., Jalili N., Coupled Vibration and Parameter Sensitivity Analysis of Rocking-Mass Vibrating Gyroscopes, Journal of Sound and Vibration, 327, 564-583, 2009.
  • 21. Ansari M., Esmailzadeh E., Jalili N., Exact Frequency Analysis of a Rotating Cantilever Beam With Tip Mass Subjected to Torsional-Bending Vibrations, Journal of Vibration and Acoustics, 133 (4), 041003, 2011.
  • 22. Burlon, A., Failla, G., Arena, F., Coupled Bending and Torsional Free Vibrations of Beams With In-Span Supports and Attached Masses, European Journal of Mechanics A/Solids. 66, 387-411, 2017.
  • 23. Katı, H. D., Gökdağ, H., Free Vibration of a Timoshenko Beam Carrying Three Dimensional Tip Mass: Analytical Solution and Experimental Modal Testing, Materials Testing, 59 (6), 591-597, 2017.
  • 24. Pukhov, G.E., Expansion Formulas for Differential Transforms. Cybern Syst. Anal. 17, 460-464, 1981.
  • 25. Pukhov, G.E., Differential Transforms and Circuit Theory. Int. J. Circ. Theor. App. 10, 265-276, 1982.
  • 26. Zhou, J.K., Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press. Wuhan China, 1986.
  • 27. Rashidi, M.M., Chamkha, A.J., Keimanesh, M., Application of Multi-Step Differential Transform Method on Flow of a Second-Grade Fluid over a Stretching or Shrinking Sheet. American Journal of Computational Mathematics. 6, 119-128, 2011.
  • 28. Liu, Z., Yin, Y., Wang, F., Zhao, Y., Cai, L., Study on Modified Differential Transform Method for Free Vibration Analysis of Uniform Euler-Bernoulli Beam, Structural Engineering and Mechanics. 48, 697-709, 2013.
  • 29. Rajasekaran, S., Differential Transformation and Differential Quadrature Methods for Centrifugally Stiffened Axially Functionally Graded Tapered Beams. International Journal of Mechanical Science. 74, 15-31, 2013.
  • 30. Yesilce, Y., Determination of Natural Frequencies and Mode Shapes of Axially Moving Timoshenko Beams with Different Boundary Conditions using Differential Transform Method. Adv. Vib. Eng. 12 (1), 90-108, 2013.
  • 31. Yesilce, Y., Differential Transform Method and Numerical Assembly Technique for Free Vibration Analysis of the Axial-Loaded Timoshenko Multi-step Beam Carrying a Number of Intermediate Lumped Masses and Rotary Inertias. Structural Engineering and Mechanics. 53 (3), 537-573, 2015.
  • 32. Liu, B., Zhou, X., Du, Q., Differential Transform Method for Some Delay Differential Equations, Applied Mathematics. 6, 585-593, 2015.
  • 33. Ghafarian, M., Ariaei, A., Free Vibration Analysis of a System of Elastically Interconnected Rotating Tapered Timoshenko Beams using Differential Transform Method, International Journal of Mechanical Sciences. 107, 93-109, 2016.
  • 34. Bozyigit, B., Yesilce, Y., Catal, S., Differential Transform Method and Adomian Decomposition Method for Free Vibration Analysis of Fluid Conveying Timoshenko Pipeline, Structural Engineering and Mechanics. 62, 65-77, 2017.
  • 35. Arvin, H., Free Vibration Analysis of Micro Rotating Beams Based on the Strain Gradient Theory using the Differential Transform Method: Timoshenko versus Euler-Bernoulli Beam Models, European Journal of Mechanics A/Solids. 65, 336-348, 2017.
  • 36. Nourifar, M., Sani, A. A., Keyhani, A., Efficient Multi-step Differential Transform Method: Theory and Its Application to Nonlinear Oscillators, Commun Nonlinear Sci Numer Simulat. 53, 154-183, 2017.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hilal Doğanay Katı 0000-0002-2807-8040

Hakan Gökdağ 0000-0003-3070-6365

Yayımlanma Tarihi 25 Haziran 2019
Gönderilme Tarihi 20 Kasım 2017
Kabul Tarihi 5 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 4

Kaynak Göster

APA Doğanay Katı, H., & Gökdağ, H. (2019). Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 1679-1694. https://doi.org/10.17341/gazimmfd.571480
AMA Doğanay Katı H, Gökdağ H. Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi. GUMMFD. Haziran 2019;34(4):1679-1694. doi:10.17341/gazimmfd.571480
Chicago Doğanay Katı, Hilal, ve Hakan Gökdağ. “Multi-Step Diferansiyel Transform Metodu Ile Uç kütle Eklentili kirişlerin Serbest titreşim Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, sy. 4 (Haziran 2019): 1679-94. https://doi.org/10.17341/gazimmfd.571480.
EndNote Doğanay Katı H, Gökdağ H (01 Haziran 2019) Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 4 1679–1694.
IEEE H. Doğanay Katı ve H. Gökdağ, “Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi”, GUMMFD, c. 34, sy. 4, ss. 1679–1694, 2019, doi: 10.17341/gazimmfd.571480.
ISNAD Doğanay Katı, Hilal - Gökdağ, Hakan. “Multi-Step Diferansiyel Transform Metodu Ile Uç kütle Eklentili kirişlerin Serbest titreşim Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/4 (Haziran 2019), 1679-1694. https://doi.org/10.17341/gazimmfd.571480.
JAMA Doğanay Katı H, Gökdağ H. Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi. GUMMFD. 2019;34:1679–1694.
MLA Doğanay Katı, Hilal ve Hakan Gökdağ. “Multi-Step Diferansiyel Transform Metodu Ile Uç kütle Eklentili kirişlerin Serbest titreşim Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 34, sy. 4, 2019, ss. 1679-94, doi:10.17341/gazimmfd.571480.
Vancouver Doğanay Katı H, Gökdağ H. Multi-step diferansiyel transform metodu ile uç kütle eklentili kirişlerin serbest titreşim analizi. GUMMFD. 2019;34(4):1679-94.