Araştırma Makalesi
BibTex RIS Kaynak Göster

Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi

Yıl 2020, Cilt: 35 Sayı: 3, 1353 - 1368, 07.04.2020
https://doi.org/10.17341/gazimmfd.528145

Öz

Günümüze kadar pek çok çalışma kumların bünye
davranışlarını modellemek üzere teoriler önermiş, klasik deneylerle bu teoriler
belli ölçüde doğrulanmıştır. Kumların gözlenen tipik gerilme-şekil değiştirme davranışını
yakalayabilen teoriler, sonrasında geliştirilen sayısal yazılımlara aktarılarak
birçok geoteknik mühendisliği probleminin çözümünde kullanılmıştır. Bu hedeften
uzaklaşmadan, halen yeni modeller geliştirilmekte, kaydedilen ilerlemeler daha
çok ilgili sayısal formülasyonların en efektif nasıl integre edileceği ya da en
geniş yelpazede zemin davranışının daha az model parametresiyle nasıl
modelleneceğine odaklanmaktadır. Bu çalışmada suya doygun kumların statik ve
dinamik davranışları teorik olarak modellenmiştir. Genelleştirilmiş Plastisite
Teorisi kapsamında, modelde kullanılan bir akma ve potansiyel yüzeyiyle yapılan
analizler, hiçbir yüzey tanımı yapmadan alınan analiz sonuçlarıyla
karşılaştırılmıştır. Kumlarda elastik ve plastik davranışları ayıran ve plastik
deformasyonların hesabında kullanılan yüzey fonksiyonlarına olan ihtiyaç burada
sorgulanmıştır. Çalışmada önce kum zeminin plastik davranışı birim vektörlerle hesaplanmıştır.
Ardından birim vektörlerin integrasyonu ile akma yüzeyi ve potansiyel
fonksiyonu çıkartılmış, zemine ait bünye ilişkileri, üç eksenli deney
simülasyonlarıyla, iki farklı formülasyon için karşılaştırmalı olarak
sunulmuştur. Çalışmanın ikinci bölümünde, yüzey tanımlı formülasyonda kullanmak
üzere yeni bir pekleşme kuralı geliştirilmiştir. Beraberinde önerilen yeni bir
interpolasyon kuralı ile de plastik yükleme modülü güncellenmiş ve gevşek
kumların sıvılaşma davranışı yeniden modellenmiştir. Model sonuçları mevcut statik
ve dinamik üç eksenli deneylerle doğrulanmıştır.

Kaynakça

  • [1] Tresca, H., Memoir on the flow of solid bodies under strong pressure, Comptes-rendus de l’académie des Sciences, 59: 754, 1864.
  • [2] von Mises, R, Göttingen Nachrichten, Math. Phys. Klasse, 582, 1913.
  • [3] Drucker, D.C., Some Implications of Work Hardening and Ideal Plasticity. Quarterly of Applied Mathematics, 7(4): 411-418, 1950.
  • [4] Drucker, D. C., Coulomb friction, plasticity and plastic analysis of limit loads. J. Appl. Mech., 21(7): 1, 1954.
  • [5] Houlsby, G.T., Study of plasticity theories and their applicability to soils, Doctoral Dissertation, University of Cambridge, 1981.
  • [6] Drucker, D.C., Gibson, R.E. and Henkel, D.J., Soil mechanics and work-hardening theories of plasticity, Trans. ASCE, 122: 338-346, 1957.
  • [7] Roscoe, K.H., Schofield, A., and Wroth, C.P., On the yielding of soils, Geotechnique, 8(1): 22-53, 1958.
  • [8] Casagrande, A., Characteristics of cohesionless soils affecting the stability of slopes and earth fills, J. Boston Society of Civil Engineers, 23(1): 13-32, 1936.
  • [9] Schofield, A., and Wroth, P., Critical state soil mechanics, Vol. 310, London: McGraw-Hill, 1968.
  • [10] Mohr, O., Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials, Zeitschrift des Vereins Deutscher Ingenieure, 46(1524-1530): 1572-1577, 1900.
  • [11] Drucker, D.C., & Prager, W., Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics, 10(2): 157-165, 1952.
  • [12] Mrǒz, Z., Norris, V.A., and Zienkiewicz, O., An anisotropic hardening model for soils and its application to cyclic loading, Int. J. Numer. Anal. Methods Geomech., 2(3): 203-221, 1978.
  • [13] Mrǒz, Z., Norris, V.A., and Zienkiewicz, O.C., An anisotropic critical state model for soils subject to cyclic loading, Geotechnique, 31(4): 451-469, 1981.
  • [14] Krieg, R.D., A practical two surface plasticity theory, J. Appl. Mech., 42(3): 641-646, 1975.
  • [15] Dafalias, Y.F. and Popov, E.P., A model of nonlinearly hardening materials for complex loading, Acta Mechanica, 21(3): 173-192, 1975.
  • [16] Dafalias, Y.F. and Hermann, L.R., Bounding surface formulation of soil plasticity, Soil Mechanics-Transient and Cyclic Loads, G. N. Pande and O. C. Zienkiewicz (Eds), Wiley, 253-282, 1982.
  • [17] Poorooshasb, H.B., & Pietruszczak, S., A generalized flow theory for sand, Soils and Foundations, 26(2): 1-15, 1986.
  • [18] Zienkiewicz, O.C. and Mroz, Z., Generalized plasticity formulation and application to geomechanics, Desai C.S., Gallagher R.H. (eds.), Mechanics of Engineering Materials, New York, Wiley, 655-679, 1984.
  • [19] Zienkiewicz, O.C., Leung, K.H., Pastor, M., Simple model for transient soil loading in earthquake analysis: I. Basic model and its application, Int. J. Numer. Anal. Methods Geomech., 9: 453-476, 1985.
  • [20] Pastor, M., Zienkiewicz, O.C., Leung, K.H., Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands, Int. J. Num. Anal. Meth. Geomech., 9: 477-498, 1985.
  • [21] Pastor, M., Zienkiewicz, O.C., Chan, A.H.C., Generalized plasticity and the modeling of soil behavior, Int. J. Num. Anal. Meth. Geomech., 14: 151-190, 1990.
  • [22] Ulker, M.B.C., Yüksek başlangıç tekrarlı gerilme oranlarının kumlarda kalıcı şekil değiştirmelere etkisi, 17. Ulusal Zemin Mekaniği ve Geoteknik Mühendisliği Konferansı, 26-28 Eylül, İstanbul Üniversitesi, İstanbul, 2018.
  • [23] di Prisco, C., & Imposimato, S., Static liquefaction of a saturated loose sand stratum, Int. Journal of Solids and Structures, 39(13-14), 3523-3541, 2002.
  • [24] Li, X. S., & Dafalias, Y. F., Constitutive modeling of inherently anisotropic sand behavior, Journal of Geotechnical and Geoenvironmental Engineering, 128(10), 868-880, 2002.
  • [25] Mróz, Z., Boukpeti, N., & Drescher, A., Constitutive model for static liquefaction, International Journal of Geomechanics, 3(2), 133-144, 2003.
  • [26] Luo, G., and Zhang, J. M., Constitutive model for sand considering the variation of its physical state, Journal of Hydraulic Engineering, 7, 005, 2004.
  • [27] Dafalias, Y. F., Papadimitriou, A. G., & Li, X. S., Sand plasticity model accounting for inherent fabric anisotropy, Journal of Engineering Mechanics, 130(11), 1319-1333, 2004.
  • [28] Imam, S. R., Morgenstern, N. R., Robertson, P. K., & Chan, D. H., A critical-state constitutive model for liquefiable sand, Canadian Geotechnical Journal, 42(3), 830-855, 2005.
  • [29] Papadimitriou, A. G., Dafalias, Y. F., & Yoshimine, M., Plasticity modeling of the effect of sample preparation method on sand response, Soils and Foundations, 45(2), 109-123, 2005.
  • [30] Ling, H. I., & Yang, S., Unified sand model based on the critical state and generalized plasticity, Journal of Engineering Mechanics, 132(12), 1380-1391, 2006.
  • [31] Andrade, J. E., & Ellison, K. C., Evaluation of a predictive constitutive model for sands. Journal of Geotechnical and Geoenvironmental Engineering, 134(12), 1825-1828, 2008.
  • [32] Rahman, M. M., Lo, S. C., & Dafalias, Y. F., Modelling the static liquefaction of sand with low-plasticity fines, Géotechnique, 64(11), 881-894, 2014.
  • [33] Lu, X., and Huang, M., Static liquefaction of sands under isotropically and K0-consolidated undrained triaxial conditions, Journal of Geotechnical and Geoenvironmental Engineering, 141(1), 04014087, 2014.
  • [34] Doanh, T., Ibraim, E., Dubujet, P., Matiotti, R., & Herle, I., Static liquefaction of very loose Hostun RF sand: Experiments and modelling. In Physics and Mechanics of Soil Liquefaction, pp. 17-28, 2018.
  • [35] Elgamal, A., Yang, Z., and Parra, E, Computational modeling of cyclic mobility and post-liquefaction site response, Soil Dynamics and Earthquake Engineering, 22(4), 259-271, 2002.
  • [36] Papadimitriou, A. G., Bouckovalas, G. D., & Dafalias, Y. F., Plasticity model for sand under small and large cyclic strains, Journal of Geotechnical and Geoenvironmental Engineering, 127(11), 973-983, 2001.
  • [37] Papadimitriou, A. G., & Bouckovalas, G. D., Plasticity model for sand under small and large cyclic strains: a multiaxial formulation, Soil Dynamics and Earthquake Engineering, 22(3), 191-204, 2002.
  • [38] Osinov, V. A., Cyclic shearing and liquefaction of soil under irregular loading: an incremental model for the dynamic earthquake-induced deformation, Soil Dynamics and Earthquake Engineering, 23(7), 535-548, 2003.
  • [39] Di Prisco, C., & Zambelli, C., Cyclic and dynamic mechanical behaviour of granular soils: Experimental evidence and constitutive modelling, Revue francaise de genie civil, 7(7-8), 881-910, 2003.
  • [40] Yang, S., & Ling, H. I., Calibration of a generalized plasticity model and its application to liquefaction analysis, In Soil Constitutive Models: Evaluation, Selection, and Calibration, pp. 483-494, 2005.
  • [41] Fu, Q., Hashash, Y. M., Jung, S., & Ghaboussi, J., Integration of laboratory testing and constitutive modeling of soils, Computers and Geotechnics, 34(5), 330-345, 2007.
  • [42] Wang, G., & Zhang, J. M., A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand, Yantu Gongcheng Xuebao Chinese Journal of Geotechnical Engineering, 29(1), 51-59, 2007.
  • [43] Zhang, J. M., & Wang, G., Large post-liquefaction deformation of sand, part I: Physical mechanism, constitutive description and numerical algorithm, Acta Geotechnica, 7(2), 69-113, 2012.
  • [44] Taiebat, M., Shahir, H., & Pak, A., Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamics and Earthquake Engineering, 27(1), 60-72, 2007.
  • [45] Andrade, J. E., A predictive framework for liquefaction instability, Géotechnique, 59(8), 673-682, 2009.
  • [46] Andrianopoulos, K. I., Papadimitriou, A. G., & Bouckovalas, G. D., Bounding surface plasticity model for the seismic liquefaction analysis of geostructures, Soil Dynamics and Earthquake Engineering, 30(10), 895-911, 2010.
  • [47] Ye, B., Ye, G., & Zhang, F., Numerical modeling of changes in anisotropy during liquefaction using a generalized constitutive model, Computers and Geotechnics, 42, 62-72, 2012.
  • [48] Boulanger, R. W., & Ziotopoulou, K., Formulation of a sand plasticity plane-strain model for earthquake engineering applications, Soil Dynamics and Earthquake Engineering, 53, 254-267, 2013.
  • [49] Wang, R., Zhang, J. M., & Wang, G., A unified plasticity model for large post-liquefaction shear deformation of sand, Computers and Geotechnics, 59, 54-66, 2014.
  • [50] Gao, Z., & Zhao, J., Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading, Journal of Engineering Mechanics, 141(8), 04015017, 2015.
  • [51] Lanzano, G., Visone, C., Bilotta, E., & de Magistris, F. S., Experimental assessment of the stress–strain behaviour of Leighton Buzzard sand for the calibration of a constitutive model, Geotechnical and Geological Engineering, 34(4), 991-1012, 2016.
  • [52] Ziotopoulou, K., & Boulanger, R. W., Plasticity modeling of liquefaction effects under sloping ground and irregular cyclic loading conditions, Soil Dynamics and Earthquake Engineering, 84, 269-283, 2016.
  • [53] Zahmatkesh, A., & Janalizadeh Choobbasti, A., Calibration of an advanced constitutive model for Babolsar sand accompanied by liquefaction analysis, Journal of Earthquake Engineering, 21(4), 679-699, 2017.
  • [54] Rahimi, M., Chan, D., & Nouri, A. (2017). Constitutive model for cyclic behaviour of cohesionless sands. Geomechanics and Geoengineering, 12(1), 36-47.
  • [55] Lode, W., Versuche über den einfuss der mittleren hauptspannung auf das fliessen der metalle eisen kupfer und nickel, Zeitung Phys., 36: 913–939, 1926.
  • [56] Rahman, M.S. and Ülker, M.B.C., Modeling and computing for geotechnical engineering: An introduction, CRC Press Science Publishers, Boca Raton, FL, 2018.
  • [57] Wilde. P., Two-invariants dependent model of granular media, Archives of Mech. (Polish Acad. Sci.), 29: 799-809, 1977.
  • [58] Ulker, M.B.C., A new hardening interpolation rule for the dynamic behavior of soils using generalized plasticity framework, 19th Int. Conf on Soil Mechanics and Geotech. Engg. ICSMGE, Sept. 17-22, Seoul, South Korea, 2017.
  • [59] Castro, G., Liquefaction of sands, Ph.D. Thesis, Harvard University, Harvard, Massachussetts, US., 1969.
  • [60] Taylor, D.W., Fundamentals of Soil Mechanics, Wiley, 1948.

Comparative study of numerical formulations developed for constitutive modeling of static and dynamic behavior of saturated sands: A newly proposed hardening law

Yıl 2020, Cilt: 35 Sayı: 3, 1353 - 1368, 07.04.2020
https://doi.org/10.17341/gazimmfd.528145

Öz

To date, many studies have proposed theories to model
the load-induced behavior of sands which have been verified, to some extent, by
classical experiments. Theories that can capture the typical stress-strain relationship
of sands were then transferred into numerical softwares used in the solution of
many geotechnical engineering problems. Without ever moving on from this goal,
new models are still being developed, and the progress that has been made thus
far now focuses more on how to integrate relevant numerical formulations in the
most effective manner or to model the broadest range of soil behavior with
fewer model parameters. In this study, the static and dynamic constitutive behaviors
of saturated sands are modeled. Within the scope of the Generalized Plasticity
Theory, analyses conducted by using a flow and a potential surface in the model
are compared with the results obtained without any reference to a surface
definition. The need for including such surface functions, which distinguishes the
elastic behavior from that of the plastic behavior of sands and which are used
to calculate plastic deformations, is questioned here. In this research,
firstly the unit vectors for loading and plastic flow directions are defined
and the static and dynamic behaviors of sands are calculated. Then, yield and
potential surfaces are derived by integrating these unit vectors and the
constitutive relations of sand are presented comparatively for the two
formulations in terms of a number of triaxial test simulations. In the second
part of the study, a new hardening law is proposed to be utilized within the
formulation with the surface definitions. The plastic loading modulus is also updated
with a newly proposed kinematic interpolation rule and the liquefaction
behavior of loose sands is remodeled. The model results are subsequently
verified with the static and dynamic triaxial tests.

Kaynakça

  • [1] Tresca, H., Memoir on the flow of solid bodies under strong pressure, Comptes-rendus de l’académie des Sciences, 59: 754, 1864.
  • [2] von Mises, R, Göttingen Nachrichten, Math. Phys. Klasse, 582, 1913.
  • [3] Drucker, D.C., Some Implications of Work Hardening and Ideal Plasticity. Quarterly of Applied Mathematics, 7(4): 411-418, 1950.
  • [4] Drucker, D. C., Coulomb friction, plasticity and plastic analysis of limit loads. J. Appl. Mech., 21(7): 1, 1954.
  • [5] Houlsby, G.T., Study of plasticity theories and their applicability to soils, Doctoral Dissertation, University of Cambridge, 1981.
  • [6] Drucker, D.C., Gibson, R.E. and Henkel, D.J., Soil mechanics and work-hardening theories of plasticity, Trans. ASCE, 122: 338-346, 1957.
  • [7] Roscoe, K.H., Schofield, A., and Wroth, C.P., On the yielding of soils, Geotechnique, 8(1): 22-53, 1958.
  • [8] Casagrande, A., Characteristics of cohesionless soils affecting the stability of slopes and earth fills, J. Boston Society of Civil Engineers, 23(1): 13-32, 1936.
  • [9] Schofield, A., and Wroth, P., Critical state soil mechanics, Vol. 310, London: McGraw-Hill, 1968.
  • [10] Mohr, O., Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials, Zeitschrift des Vereins Deutscher Ingenieure, 46(1524-1530): 1572-1577, 1900.
  • [11] Drucker, D.C., & Prager, W., Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics, 10(2): 157-165, 1952.
  • [12] Mrǒz, Z., Norris, V.A., and Zienkiewicz, O., An anisotropic hardening model for soils and its application to cyclic loading, Int. J. Numer. Anal. Methods Geomech., 2(3): 203-221, 1978.
  • [13] Mrǒz, Z., Norris, V.A., and Zienkiewicz, O.C., An anisotropic critical state model for soils subject to cyclic loading, Geotechnique, 31(4): 451-469, 1981.
  • [14] Krieg, R.D., A practical two surface plasticity theory, J. Appl. Mech., 42(3): 641-646, 1975.
  • [15] Dafalias, Y.F. and Popov, E.P., A model of nonlinearly hardening materials for complex loading, Acta Mechanica, 21(3): 173-192, 1975.
  • [16] Dafalias, Y.F. and Hermann, L.R., Bounding surface formulation of soil plasticity, Soil Mechanics-Transient and Cyclic Loads, G. N. Pande and O. C. Zienkiewicz (Eds), Wiley, 253-282, 1982.
  • [17] Poorooshasb, H.B., & Pietruszczak, S., A generalized flow theory for sand, Soils and Foundations, 26(2): 1-15, 1986.
  • [18] Zienkiewicz, O.C. and Mroz, Z., Generalized plasticity formulation and application to geomechanics, Desai C.S., Gallagher R.H. (eds.), Mechanics of Engineering Materials, New York, Wiley, 655-679, 1984.
  • [19] Zienkiewicz, O.C., Leung, K.H., Pastor, M., Simple model for transient soil loading in earthquake analysis: I. Basic model and its application, Int. J. Numer. Anal. Methods Geomech., 9: 453-476, 1985.
  • [20] Pastor, M., Zienkiewicz, O.C., Leung, K.H., Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands, Int. J. Num. Anal. Meth. Geomech., 9: 477-498, 1985.
  • [21] Pastor, M., Zienkiewicz, O.C., Chan, A.H.C., Generalized plasticity and the modeling of soil behavior, Int. J. Num. Anal. Meth. Geomech., 14: 151-190, 1990.
  • [22] Ulker, M.B.C., Yüksek başlangıç tekrarlı gerilme oranlarının kumlarda kalıcı şekil değiştirmelere etkisi, 17. Ulusal Zemin Mekaniği ve Geoteknik Mühendisliği Konferansı, 26-28 Eylül, İstanbul Üniversitesi, İstanbul, 2018.
  • [23] di Prisco, C., & Imposimato, S., Static liquefaction of a saturated loose sand stratum, Int. Journal of Solids and Structures, 39(13-14), 3523-3541, 2002.
  • [24] Li, X. S., & Dafalias, Y. F., Constitutive modeling of inherently anisotropic sand behavior, Journal of Geotechnical and Geoenvironmental Engineering, 128(10), 868-880, 2002.
  • [25] Mróz, Z., Boukpeti, N., & Drescher, A., Constitutive model for static liquefaction, International Journal of Geomechanics, 3(2), 133-144, 2003.
  • [26] Luo, G., and Zhang, J. M., Constitutive model for sand considering the variation of its physical state, Journal of Hydraulic Engineering, 7, 005, 2004.
  • [27] Dafalias, Y. F., Papadimitriou, A. G., & Li, X. S., Sand plasticity model accounting for inherent fabric anisotropy, Journal of Engineering Mechanics, 130(11), 1319-1333, 2004.
  • [28] Imam, S. R., Morgenstern, N. R., Robertson, P. K., & Chan, D. H., A critical-state constitutive model for liquefiable sand, Canadian Geotechnical Journal, 42(3), 830-855, 2005.
  • [29] Papadimitriou, A. G., Dafalias, Y. F., & Yoshimine, M., Plasticity modeling of the effect of sample preparation method on sand response, Soils and Foundations, 45(2), 109-123, 2005.
  • [30] Ling, H. I., & Yang, S., Unified sand model based on the critical state and generalized plasticity, Journal of Engineering Mechanics, 132(12), 1380-1391, 2006.
  • [31] Andrade, J. E., & Ellison, K. C., Evaluation of a predictive constitutive model for sands. Journal of Geotechnical and Geoenvironmental Engineering, 134(12), 1825-1828, 2008.
  • [32] Rahman, M. M., Lo, S. C., & Dafalias, Y. F., Modelling the static liquefaction of sand with low-plasticity fines, Géotechnique, 64(11), 881-894, 2014.
  • [33] Lu, X., and Huang, M., Static liquefaction of sands under isotropically and K0-consolidated undrained triaxial conditions, Journal of Geotechnical and Geoenvironmental Engineering, 141(1), 04014087, 2014.
  • [34] Doanh, T., Ibraim, E., Dubujet, P., Matiotti, R., & Herle, I., Static liquefaction of very loose Hostun RF sand: Experiments and modelling. In Physics and Mechanics of Soil Liquefaction, pp. 17-28, 2018.
  • [35] Elgamal, A., Yang, Z., and Parra, E, Computational modeling of cyclic mobility and post-liquefaction site response, Soil Dynamics and Earthquake Engineering, 22(4), 259-271, 2002.
  • [36] Papadimitriou, A. G., Bouckovalas, G. D., & Dafalias, Y. F., Plasticity model for sand under small and large cyclic strains, Journal of Geotechnical and Geoenvironmental Engineering, 127(11), 973-983, 2001.
  • [37] Papadimitriou, A. G., & Bouckovalas, G. D., Plasticity model for sand under small and large cyclic strains: a multiaxial formulation, Soil Dynamics and Earthquake Engineering, 22(3), 191-204, 2002.
  • [38] Osinov, V. A., Cyclic shearing and liquefaction of soil under irregular loading: an incremental model for the dynamic earthquake-induced deformation, Soil Dynamics and Earthquake Engineering, 23(7), 535-548, 2003.
  • [39] Di Prisco, C., & Zambelli, C., Cyclic and dynamic mechanical behaviour of granular soils: Experimental evidence and constitutive modelling, Revue francaise de genie civil, 7(7-8), 881-910, 2003.
  • [40] Yang, S., & Ling, H. I., Calibration of a generalized plasticity model and its application to liquefaction analysis, In Soil Constitutive Models: Evaluation, Selection, and Calibration, pp. 483-494, 2005.
  • [41] Fu, Q., Hashash, Y. M., Jung, S., & Ghaboussi, J., Integration of laboratory testing and constitutive modeling of soils, Computers and Geotechnics, 34(5), 330-345, 2007.
  • [42] Wang, G., & Zhang, J. M., A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand, Yantu Gongcheng Xuebao Chinese Journal of Geotechnical Engineering, 29(1), 51-59, 2007.
  • [43] Zhang, J. M., & Wang, G., Large post-liquefaction deformation of sand, part I: Physical mechanism, constitutive description and numerical algorithm, Acta Geotechnica, 7(2), 69-113, 2012.
  • [44] Taiebat, M., Shahir, H., & Pak, A., Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamics and Earthquake Engineering, 27(1), 60-72, 2007.
  • [45] Andrade, J. E., A predictive framework for liquefaction instability, Géotechnique, 59(8), 673-682, 2009.
  • [46] Andrianopoulos, K. I., Papadimitriou, A. G., & Bouckovalas, G. D., Bounding surface plasticity model for the seismic liquefaction analysis of geostructures, Soil Dynamics and Earthquake Engineering, 30(10), 895-911, 2010.
  • [47] Ye, B., Ye, G., & Zhang, F., Numerical modeling of changes in anisotropy during liquefaction using a generalized constitutive model, Computers and Geotechnics, 42, 62-72, 2012.
  • [48] Boulanger, R. W., & Ziotopoulou, K., Formulation of a sand plasticity plane-strain model for earthquake engineering applications, Soil Dynamics and Earthquake Engineering, 53, 254-267, 2013.
  • [49] Wang, R., Zhang, J. M., & Wang, G., A unified plasticity model for large post-liquefaction shear deformation of sand, Computers and Geotechnics, 59, 54-66, 2014.
  • [50] Gao, Z., & Zhao, J., Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading, Journal of Engineering Mechanics, 141(8), 04015017, 2015.
  • [51] Lanzano, G., Visone, C., Bilotta, E., & de Magistris, F. S., Experimental assessment of the stress–strain behaviour of Leighton Buzzard sand for the calibration of a constitutive model, Geotechnical and Geological Engineering, 34(4), 991-1012, 2016.
  • [52] Ziotopoulou, K., & Boulanger, R. W., Plasticity modeling of liquefaction effects under sloping ground and irregular cyclic loading conditions, Soil Dynamics and Earthquake Engineering, 84, 269-283, 2016.
  • [53] Zahmatkesh, A., & Janalizadeh Choobbasti, A., Calibration of an advanced constitutive model for Babolsar sand accompanied by liquefaction analysis, Journal of Earthquake Engineering, 21(4), 679-699, 2017.
  • [54] Rahimi, M., Chan, D., & Nouri, A. (2017). Constitutive model for cyclic behaviour of cohesionless sands. Geomechanics and Geoengineering, 12(1), 36-47.
  • [55] Lode, W., Versuche über den einfuss der mittleren hauptspannung auf das fliessen der metalle eisen kupfer und nickel, Zeitung Phys., 36: 913–939, 1926.
  • [56] Rahman, M.S. and Ülker, M.B.C., Modeling and computing for geotechnical engineering: An introduction, CRC Press Science Publishers, Boca Raton, FL, 2018.
  • [57] Wilde. P., Two-invariants dependent model of granular media, Archives of Mech. (Polish Acad. Sci.), 29: 799-809, 1977.
  • [58] Ulker, M.B.C., A new hardening interpolation rule for the dynamic behavior of soils using generalized plasticity framework, 19th Int. Conf on Soil Mechanics and Geotech. Engg. ICSMGE, Sept. 17-22, Seoul, South Korea, 2017.
  • [59] Castro, G., Liquefaction of sands, Ph.D. Thesis, Harvard University, Harvard, Massachussetts, US., 1969.
  • [60] Taylor, D.W., Fundamentals of Soil Mechanics, Wiley, 1948.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Ulker 0000-0001-7632-2303

Yayımlanma Tarihi 7 Nisan 2020
Gönderilme Tarihi 13 Mart 2019
Kabul Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 3

Kaynak Göster

APA Ulker, M. (2020). Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1353-1368. https://doi.org/10.17341/gazimmfd.528145
AMA Ulker M. Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi. GUMMFD. Nisan 2020;35(3):1353-1368. doi:10.17341/gazimmfd.528145
Chicago Ulker, Mehmet. “Doygun kumların Statik Ve Dinamik davranışlarının bünyesel Modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni Bir pekleşme Kuralı önerisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 3 (Nisan 2020): 1353-68. https://doi.org/10.17341/gazimmfd.528145.
EndNote Ulker M (01 Nisan 2020) Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1353–1368.
IEEE M. Ulker, “Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi”, GUMMFD, c. 35, sy. 3, ss. 1353–1368, 2020, doi: 10.17341/gazimmfd.528145.
ISNAD Ulker, Mehmet. “Doygun kumların Statik Ve Dinamik davranışlarının bünyesel Modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni Bir pekleşme Kuralı önerisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (Nisan 2020), 1353-1368. https://doi.org/10.17341/gazimmfd.528145.
JAMA Ulker M. Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi. GUMMFD. 2020;35:1353–1368.
MLA Ulker, Mehmet. “Doygun kumların Statik Ve Dinamik davranışlarının bünyesel Modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni Bir pekleşme Kuralı önerisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 1353-68, doi:10.17341/gazimmfd.528145.
Vancouver Ulker M. Doygun kumların statik ve dinamik davranışlarının bünyesel modellenmesine yönelik geliştirilen sayısal formülasyonların karşılaştırmalı çalışması: Yeni bir pekleşme kuralı önerisi. GUMMFD. 2020;35(3):1353-68.