Araştırma Makalesi
BibTex RIS Kaynak Göster

3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması

Yıl 2024, Cilt: 39 Sayı: 1, 139 - 150, 21.08.2023
https://doi.org/10.17341/gazimmfd.1172545

Öz

Bal peteği sandviç kompozitler birçok sektörde yaygın olarak kullanılmaktadır. Sandviç kompozitlerin kullanım amaçlarına uygun karşılaşabileceği düşük hızdaki darbelerden kaynaklanan darbe dayanımlarının tespit edilmesi önem arz etmektedir. Bu çalışmada üç farklı hücre genişliği ve hücre duvar kalınlığındaki bal peteği geometrileri kullanılarak 3 boyutlu yazıcıda polilaktik asit (PLA) filamentten üretilen çekirdeklerin alt ve üst yüzeyleri karbon fiber takviyeli kompozit plakalarla (CFRP) yapıştırıcı ile birleştirilen sandviç kompozitlerin düşük hızda darbe performansları araştırılmıştır. Çalışmada üç farklı hücre genişliği ve hücre duvar kalınlığı sırasıyla 6_0,8mm, 9_1,2mm ve 12_1,6mm ölçülerindeki bal peteği geometrileri kullanılmıştır. Düşük hızda darbeye maruz bırakılan numunelerde eşit yüzey alanı elde etmek amacıyla hem hücre genişliği hem de hücre duvar kalınlıkları artırılarak bu ölçüler tercih edilmiştir. Her bir geometrideki ölçülerde üretilen bal peteği sandviç kompozit numunelere beş farklı enerji seviyelerinde (30J, 40J, 60J, 80J ve 100J) düşük hızda darbe testleri uygulanmış, 100J darbe enerjisinde sandviç kompozitler tamamen delinmiştir. Birbirine yakın yüzey alanına sahip üç farklı hücre genişliği ve hücre duvar kalınlığındaki sandviç kompozitlerin darbeye karşı benzer performans gösterdiği tespit edilmiştir.

Destekleyen Kurum

İnönü Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2020-2349

Teşekkür

Bu çalışma; İnönü Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-2020-2349 nolu proje ile desteklenmiştir.

Kaynakça

  • Zhang, G., Wang, B., Ma, L., Wu, L., Pan, S., & Yang, J., Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Composite Structures, 108, 304-310, 2014.
  • Sharma, S. C., Narasimha Murthy, H. N., & Krishna, M., Low-velocity impact response of polyurethane foam composite sandwich structures. Journal of reinforced plastics and composites, 23(17), 1869-1882, 2004.
  • Njuguna, J., Michałowski, S., Pielichowski, K., Kayvantash, K., & Walton, A. C., Fabrication, characterization and low‐velocity impact testing of hybrid sandwich composites with polyurethane/layered silicate foam cores. Polymer Composites, 32(1), 6-13, 2011.
  • Alfouneh, M., Ji, J., & Luo, Q., Optimal design of multi-cellular cores for sandwich panels under harmonic excitation. Composite Structures, 248, 112507, 2020.
  • Hosur, M. V., Mohammed, A. A., Zainuddin, S., & Jeelani, S., Impact performance of nanophased foam core sandwich composites. Materials Science and Engineering: A, 498(1-2), 100-109, 2008.
  • Fatt, M. S. H., & Park, K. S., Dynamic models for low-velocity impact damage of composite sandwich panels–Part A: Deformation. Composite Structures, 52(3-4), 335-351, 2001
  • Caprino, G., & Teti, R., Impact and post-impact behavior of foam core sandwich structures. Composite Structures, 29(1), 47-55, 1994.
  • Taraghi, I., & Fereidoon, A., Non-destructive evaluation of damage modes in nanocomposite foam-core sandwich panel subjected to low-velocity impact. Composites Part B: Engineering, 103, 51-59, 2016.
  • He, Y., Tian, G., Pan, M., & Chen, D., Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current. Composites Part B: Engineering, 59, 196-203, 2014.
  • Wang, S. X., Wu, L. Z., & Ma, L., Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates. Materials & Design, 31(1), 118-125, 2010.
  • Usta, F., Türkmen, H. S., & Scarpa, F., Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin-Walled Structures, 163, 107738, 2021.
  • Topkaya, T., & Solmaz, M. Y., Investigation of low velocity impact behaviors of honeycomb sandwich composites. Journal of Mechanical Science and Technology, 32(7), 3161-3167, 2018.
  • Kaya, G., & Selver, E., Impact resistance of Z-pin-reinforced sandwich composites. Journal of Composite Materials, 53(26-27), 3681-3699, 2019.
  • Arslan, K., Güneş, R., Apalak, M. K., & Reddy, J. N., Fonksiyonel Kademelendirilmiş Plakalar ile Desteklenmiş Bal Peteği Sandviç Yapıların Düşük Hızlı Darbe Davranışlarının İncelenme. 2015.
  • Akkuş, H., Düzcükoğlu, H., & Şahin, Ö. S., Alüminyum bal peteği yapılarında darbe mukavemeti tahmini için regresyon modeli oluşturulması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(3), 102-111, 2016.
  • Chen, Q., Du, S., Jiang, Z., Liu, Y., Du, R., & Zhao, G., Mechanical properties of foam sandwich with chopped‐glass‐fiber/carbon nanotube reinforced hierarchical structure interlayer. Polymer Composites, 41(8), 3411-3420, 2020.
  • Wang, Z., Chen, Q., Du, R., Linghu, T., Gao, Y., & Zhao, G., Influences of dispersion types and area densities of chopped fiber‐based interfacial reinforcements on mechanical properties of sandwich structures. Polymer Composites, 40(S1), E449-E455, 2019.
  • Hao, A., Zhao, H., & Chen, J. Y., Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Composites Part B: Engineering, 54, 44-51, 2013.
  • Zangana, S., Epaarachchi, J., Ferdous, W., & Leng, J., A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres–Investigation under low-velocity impact. International Journal of Impact Engineering, 137, 103430, 2020.
  • Al-Shamary, A. K. J., Karakuzu, R., & Özdemir, O., Low-velocity impact response of sandwich composites with different foam core configurations. Journal of Sandwich Structures & Materials, 18(6), 754-768, 2016.
  • Ude, A. U., Ariffin, A. K., & Azhari, C. H., An experimental investigation on the response of woven natural silk fiber/epoxy sandwich composite panels under low velocity impact. Fibers and Polymers, 14(1), 127-132, 2013.
  • Go, S. H., Kim, H. G., Shin, H. J., Lee, M. S., Yoon, H. G., & Kwac, L. K., The impact fracture behaviors of CFRP/EVA composites by drop-weight impact test. Carbon letters, 21, 23-32, 2017.
  • Cormos, R., Petrescu, H., Hadar, A., ADIR13, G. M., & Gheorghiu, H., Finite Element Analysis of the Multilayered Honeycomb. MATERIALE PLASTICE, 54(1), 180, 2017.
  • Gardan, J., Additive manufacturing technologies: state of the art and trends. Additive Manufacturing Handbook, 149-168, 2017.
  • Jiga, G. G., Burtoiu, M. G., Pascu, N. E., & Dobrescu, T. G., Behavior of Different PLA Sandwich Structures Loaded in Three Points Bending. In Macromolecular Symposia (Vol. 396, No. 1, p. 2000306), 2021.
  • Lu, C., Qi, M., Islam, S., Chen, P., Gao, S., Xu, Y., & Yang, X., Mechanical performance of 3D-printing plastic honeycomb sandwich structure. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 47-54, 2018.
  • Kaveloglu, S., & Temiz, S., An experimental and finite element analysis of 3D printed honeycomb structures under axial compression. Polymers and Polymer Composites, 30, 09673911221122333, 2022.
  • Li, T., & Wang, L., Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 175, 46-57, 2017.
  • Ali, M. H., & Batai, S., Bending behavior of sandwich composite structures of 3D-printed materials. In Advances in Materials and Manufacturing Engineering (pp. 281-287). Springer, Singapore, 2020.
  • Brischetto, S., Ferro, C. G., Torre, R., & Maggiore, P., 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures, 5(1), 80-94, 2018.
  • Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y., 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114-121, 2018.
  • Kaveloğlu, S., Temiz, Ş., Doğan, O., & Kamer, M. S., 3 Boyutlu Yazıcı ile Üretilen Farklı Hücre Çaplarındaki Bal Peteği Sandviç Yapıların Eğme Dayanımlarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 459-470, 2022.
  • Lascano, D., Guillen-Pineda, R., Quiles-Carrillo, L., Ivorra-Martínez, J., Balart, R., Montanes, N., & Boronat, T., Manufacturing and characterization of highly environmentally friendly sandwich composites from polylactide cores and flax-polylactide faces. Polymers, 13(3), 342, 2021.
  • Özen, İ., Çava, K., Gedikli, H., Alver, Ü., & Aslan, M. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores. Thin-Walled Structures, 156, 106989, 2020.
  • Gülçimen, Ç., B., Ensarioğlu, C., Kucukakarsu, V., Tekin, I., & Cakir, M., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 2021.
  • ASTM-D7766/D7766M-16, Standard Practice for Damage Resistance Testing of Sandwich Constructions, doi:10.1520/D7766_D7766-16, 2016.
  • The Ultimaker 2+ specifications, https://support.ultimaker.com/hc/en-us/articles/360011915779-The-Ultimaker-2-specifications, 2020, (Accessed 25.06.2022).
  • Ultimaker Cura 4.10 sofware, https://ultimaker.com/learn/an-improved-engineering-workflow-with-ultimaker-cura-4-10, 2022, (Accessed 25.06.2022).
  • Kompozitnet company, https://www.kompozit.net/karbon-fiber-plaka-pro-t-1mm-50cmx50cm (Accessed 05.07.2022)
  • Araldite® 2015 Adhesive Technical Datasheet, https://docs.rsonline.com/47fc/A700000006492752.pdf , 2015, (Accessed 05.07.2022).
  • Geren, N., Acer, D. C., Uzay, C., & Bayramoglu, M. The effect of boron carbide additive on the low‐velocity impact properties of low‐density foam core composite sandwich structures. Polymer Composites, 42(4), 2037-2049, 2021.
  • Esendemir, Ü., & Caner, A. Y., Tabakalı Kompozit Malzemelerin Darbe Davranışının Deneysel Olarak İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 207-215, 2018.

Investigation of low-velocity impact performances of sandwich composites manufactured using 3d printer

Yıl 2024, Cilt: 39 Sayı: 1, 139 - 150, 21.08.2023
https://doi.org/10.17341/gazimmfd.1172545

Öz

Proje Numarası

FDK-2020-2349

Kaynakça

  • Zhang, G., Wang, B., Ma, L., Wu, L., Pan, S., & Yang, J., Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Composite Structures, 108, 304-310, 2014.
  • Sharma, S. C., Narasimha Murthy, H. N., & Krishna, M., Low-velocity impact response of polyurethane foam composite sandwich structures. Journal of reinforced plastics and composites, 23(17), 1869-1882, 2004.
  • Njuguna, J., Michałowski, S., Pielichowski, K., Kayvantash, K., & Walton, A. C., Fabrication, characterization and low‐velocity impact testing of hybrid sandwich composites with polyurethane/layered silicate foam cores. Polymer Composites, 32(1), 6-13, 2011.
  • Alfouneh, M., Ji, J., & Luo, Q., Optimal design of multi-cellular cores for sandwich panels under harmonic excitation. Composite Structures, 248, 112507, 2020.
  • Hosur, M. V., Mohammed, A. A., Zainuddin, S., & Jeelani, S., Impact performance of nanophased foam core sandwich composites. Materials Science and Engineering: A, 498(1-2), 100-109, 2008.
  • Fatt, M. S. H., & Park, K. S., Dynamic models for low-velocity impact damage of composite sandwich panels–Part A: Deformation. Composite Structures, 52(3-4), 335-351, 2001
  • Caprino, G., & Teti, R., Impact and post-impact behavior of foam core sandwich structures. Composite Structures, 29(1), 47-55, 1994.
  • Taraghi, I., & Fereidoon, A., Non-destructive evaluation of damage modes in nanocomposite foam-core sandwich panel subjected to low-velocity impact. Composites Part B: Engineering, 103, 51-59, 2016.
  • He, Y., Tian, G., Pan, M., & Chen, D., Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current. Composites Part B: Engineering, 59, 196-203, 2014.
  • Wang, S. X., Wu, L. Z., & Ma, L., Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates. Materials & Design, 31(1), 118-125, 2010.
  • Usta, F., Türkmen, H. S., & Scarpa, F., Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin-Walled Structures, 163, 107738, 2021.
  • Topkaya, T., & Solmaz, M. Y., Investigation of low velocity impact behaviors of honeycomb sandwich composites. Journal of Mechanical Science and Technology, 32(7), 3161-3167, 2018.
  • Kaya, G., & Selver, E., Impact resistance of Z-pin-reinforced sandwich composites. Journal of Composite Materials, 53(26-27), 3681-3699, 2019.
  • Arslan, K., Güneş, R., Apalak, M. K., & Reddy, J. N., Fonksiyonel Kademelendirilmiş Plakalar ile Desteklenmiş Bal Peteği Sandviç Yapıların Düşük Hızlı Darbe Davranışlarının İncelenme. 2015.
  • Akkuş, H., Düzcükoğlu, H., & Şahin, Ö. S., Alüminyum bal peteği yapılarında darbe mukavemeti tahmini için regresyon modeli oluşturulması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(3), 102-111, 2016.
  • Chen, Q., Du, S., Jiang, Z., Liu, Y., Du, R., & Zhao, G., Mechanical properties of foam sandwich with chopped‐glass‐fiber/carbon nanotube reinforced hierarchical structure interlayer. Polymer Composites, 41(8), 3411-3420, 2020.
  • Wang, Z., Chen, Q., Du, R., Linghu, T., Gao, Y., & Zhao, G., Influences of dispersion types and area densities of chopped fiber‐based interfacial reinforcements on mechanical properties of sandwich structures. Polymer Composites, 40(S1), E449-E455, 2019.
  • Hao, A., Zhao, H., & Chen, J. Y., Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Composites Part B: Engineering, 54, 44-51, 2013.
  • Zangana, S., Epaarachchi, J., Ferdous, W., & Leng, J., A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres–Investigation under low-velocity impact. International Journal of Impact Engineering, 137, 103430, 2020.
  • Al-Shamary, A. K. J., Karakuzu, R., & Özdemir, O., Low-velocity impact response of sandwich composites with different foam core configurations. Journal of Sandwich Structures & Materials, 18(6), 754-768, 2016.
  • Ude, A. U., Ariffin, A. K., & Azhari, C. H., An experimental investigation on the response of woven natural silk fiber/epoxy sandwich composite panels under low velocity impact. Fibers and Polymers, 14(1), 127-132, 2013.
  • Go, S. H., Kim, H. G., Shin, H. J., Lee, M. S., Yoon, H. G., & Kwac, L. K., The impact fracture behaviors of CFRP/EVA composites by drop-weight impact test. Carbon letters, 21, 23-32, 2017.
  • Cormos, R., Petrescu, H., Hadar, A., ADIR13, G. M., & Gheorghiu, H., Finite Element Analysis of the Multilayered Honeycomb. MATERIALE PLASTICE, 54(1), 180, 2017.
  • Gardan, J., Additive manufacturing technologies: state of the art and trends. Additive Manufacturing Handbook, 149-168, 2017.
  • Jiga, G. G., Burtoiu, M. G., Pascu, N. E., & Dobrescu, T. G., Behavior of Different PLA Sandwich Structures Loaded in Three Points Bending. In Macromolecular Symposia (Vol. 396, No. 1, p. 2000306), 2021.
  • Lu, C., Qi, M., Islam, S., Chen, P., Gao, S., Xu, Y., & Yang, X., Mechanical performance of 3D-printing plastic honeycomb sandwich structure. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 47-54, 2018.
  • Kaveloglu, S., & Temiz, S., An experimental and finite element analysis of 3D printed honeycomb structures under axial compression. Polymers and Polymer Composites, 30, 09673911221122333, 2022.
  • Li, T., & Wang, L., Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 175, 46-57, 2017.
  • Ali, M. H., & Batai, S., Bending behavior of sandwich composite structures of 3D-printed materials. In Advances in Materials and Manufacturing Engineering (pp. 281-287). Springer, Singapore, 2020.
  • Brischetto, S., Ferro, C. G., Torre, R., & Maggiore, P., 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures, 5(1), 80-94, 2018.
  • Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y., 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114-121, 2018.
  • Kaveloğlu, S., Temiz, Ş., Doğan, O., & Kamer, M. S., 3 Boyutlu Yazıcı ile Üretilen Farklı Hücre Çaplarındaki Bal Peteği Sandviç Yapıların Eğme Dayanımlarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 459-470, 2022.
  • Lascano, D., Guillen-Pineda, R., Quiles-Carrillo, L., Ivorra-Martínez, J., Balart, R., Montanes, N., & Boronat, T., Manufacturing and characterization of highly environmentally friendly sandwich composites from polylactide cores and flax-polylactide faces. Polymers, 13(3), 342, 2021.
  • Özen, İ., Çava, K., Gedikli, H., Alver, Ü., & Aslan, M. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores. Thin-Walled Structures, 156, 106989, 2020.
  • Gülçimen, Ç., B., Ensarioğlu, C., Kucukakarsu, V., Tekin, I., & Cakir, M., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 2021.
  • ASTM-D7766/D7766M-16, Standard Practice for Damage Resistance Testing of Sandwich Constructions, doi:10.1520/D7766_D7766-16, 2016.
  • The Ultimaker 2+ specifications, https://support.ultimaker.com/hc/en-us/articles/360011915779-The-Ultimaker-2-specifications, 2020, (Accessed 25.06.2022).
  • Ultimaker Cura 4.10 sofware, https://ultimaker.com/learn/an-improved-engineering-workflow-with-ultimaker-cura-4-10, 2022, (Accessed 25.06.2022).
  • Kompozitnet company, https://www.kompozit.net/karbon-fiber-plaka-pro-t-1mm-50cmx50cm (Accessed 05.07.2022)
  • Araldite® 2015 Adhesive Technical Datasheet, https://docs.rsonline.com/47fc/A700000006492752.pdf , 2015, (Accessed 05.07.2022).
  • Geren, N., Acer, D. C., Uzay, C., & Bayramoglu, M. The effect of boron carbide additive on the low‐velocity impact properties of low‐density foam core composite sandwich structures. Polymer Composites, 42(4), 2037-2049, 2021.
  • Esendemir, Ü., & Caner, A. Y., Tabakalı Kompozit Malzemelerin Darbe Davranışının Deneysel Olarak İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 207-215, 2018.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serdar Kaveloğlu 0000-0003-0157-7314

Şemsettin Temiz 0000-0002-6737-3720

Proje Numarası FDK-2020-2349
Erken Görünüm Tarihi 5 Mayıs 2023
Yayımlanma Tarihi 21 Ağustos 2023
Gönderilme Tarihi 8 Eylül 2022
Kabul Tarihi 12 Ocak 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 1

Kaynak Göster

APA Kaveloğlu, S., & Temiz, Ş. (2023). 3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 139-150. https://doi.org/10.17341/gazimmfd.1172545
AMA Kaveloğlu S, Temiz Ş. 3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması. GUMMFD. Ağustos 2023;39(1):139-150. doi:10.17341/gazimmfd.1172545
Chicago Kaveloğlu, Serdar, ve Şemsettin Temiz. “3 Boyutlu yazıcı kullanılarak üretilen Sandviç Kompozitlerin düşük hızda Darbe performanslarının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 1 (Ağustos 2023): 139-50. https://doi.org/10.17341/gazimmfd.1172545.
EndNote Kaveloğlu S, Temiz Ş (01 Ağustos 2023) 3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 139–150.
IEEE S. Kaveloğlu ve Ş. Temiz, “3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması”, GUMMFD, c. 39, sy. 1, ss. 139–150, 2023, doi: 10.17341/gazimmfd.1172545.
ISNAD Kaveloğlu, Serdar - Temiz, Şemsettin. “3 Boyutlu yazıcı kullanılarak üretilen Sandviç Kompozitlerin düşük hızda Darbe performanslarının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (Ağustos 2023), 139-150. https://doi.org/10.17341/gazimmfd.1172545.
JAMA Kaveloğlu S, Temiz Ş. 3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması. GUMMFD. 2023;39:139–150.
MLA Kaveloğlu, Serdar ve Şemsettin Temiz. “3 Boyutlu yazıcı kullanılarak üretilen Sandviç Kompozitlerin düşük hızda Darbe performanslarının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 1, 2023, ss. 139-50, doi:10.17341/gazimmfd.1172545.
Vancouver Kaveloğlu S, Temiz Ş. 3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması. GUMMFD. 2023;39(1):139-50.