Araştırma Makalesi
BibTex RIS Kaynak Göster

GÜVENLİK TEKNOLOJİLERİNDE GNSS’İN STRATEJİK ROLÜ VE ULUSAL NAVİGASYON SİSTEMLERİNE YÖNELİK ALTERNATİF YAKLAŞIMLAR

Yıl 2025, Sayı: Kolluk Uygulamaları ve Güvenlik Teknolojileri Özel Sayısı, 233 - 257, 27.10.2025

Öz

Küresel Uydu Navigasyon Sistemleri (GNSS), modern dünyanın hem sivil hem de askeri alanlarında kritik bir altyapı unsuru haline gelmiştir. Ulaşım, enerji, finans ve güvenlik sektörlerinde sağladığı yüksek doğruluklu konum, zaman ve yön verisi sayesinde GNSS sistemleri, günlük yaşamdan stratejik operasyonlara kadar geniş bir kullanım alanına sahiptir. Ancak bu yaygın kullanım, beraberinde zayıf sinyal yapısından kaynaklanan jammer ve spoofer saldırılarına açık olma, jeopolitik bağımlılık ve sistemik çökme riskleri gibi ciddi güvenlik tehditlerini getirmiştir. Bu tehditler, özellikle elektronik harp ve siber saldırı ortamlarında GNSS sistemlerini kırılgan hale getirmektedir. Bu makale, GNSS'e olan stratejik bağımlılığın ulusal güvenlik üzerindeki etkilerini analiz etmekte ve alternatif çözüm olarak ulusal karasal navigasyon sistemlerinin geliştirilmesinin önemini vurgulamaktadır. eLoran, DGNSS ve RTK gibi karasal sistemler; güçlü sinyal yapıları, yerel kontrol edilebilirlikleri ve jammer/spoofer dayanımları sayesinde GNSS’in tamamlayıcısı ve yedeği olarak öne çıkmaktadır. Türkiye özelinde milli karasal navigasyon altyapısının kurulması, savunma sanayii stratejileri ve milli teknoloji hamleleriyle paralel yürütülmesi gereken bir zorunluluk haline gelmiştir. Bu doğrultuda, çok katmanlı navigasyon sistemleri (GNSS + karasal + ataletsel sistemler) ulusal güvenliğin sürdürülebilirliği açısından kritik bir strateji olarak önerilmektedir.

Kaynakça

  • Aktuğ, Ş. (2015). Art Of Celestial Navigation. İstanbul: Piri Reis Üniversitesi Yayınları.
  • Androjna, A., Brcko, T., Pavic, I., & Greidanus, H. (2020). Assessing cyber challenges of maritime navigation. Journal of Marine Science and Engineering, 8(10), 776.
  • Androjna, A., & Perkovič, M. (2021). Impact of spoofing of navigation systems on maritime situational awareness. Transactions on Maritime Science, 10(02), 361-373.
  • Borodacz, K., & Szczepański, C. (2024). GNSS denied navigation system for the manoeuvring flying objects. Aircraft Engineering and Aerospace Technology, 96(1), 63-72.
  • Dovis, F. (Ed.). (2015). GNSS interference threats and countermeasures. Artech House.
  • Duraklar, K. (2025) FPGA-Based Embedded System for Real-Time Detection and Analysis of RF Signals in Tactical Electronic Warfare. 2nd International Conference on Engineering, Natural Sciences, and Technological Developments (ICENSTED 2025), 493.
  • Enge, P. K. (1994). The global positioning system: Signals, measurements, and performance. International Journal of Wireless Information Networks, 1, 83-105.
  • Fredeluces, E., Ozeki, T., Kubo, N., & El-Mowafy, A. (2024). Modified RTK-GNSS for challenging environments. Sensors, 24(9), 2712.
  • Göde, E., Teoman, A., Kushan, M. C., Tonbul, K., Öğünç, G. İ., & Daz, B. (2024). Global Navigation Satellite System (GNSS) Independent Navigation for Unmanned Aerial Vehicles (UAV). Journal of Aviation Research, 6(1), 53-88.
  • GPS (2025). https://www-gps-gov.translate.goog/systems/gnss/?_x_tr_sl=en&_x_tr_tl=tr&_x_tr_hl=tr&_x_tr_pto=tc (Access date: 22.04.2025)
  • Grejner-Brzezinska, D. A., Toth, C. K., Moore, T., Raquet, J. F., Miller, M. M., & Kealy, A. (2016). Multisensor navigation systems: A remedy for GNSS vulnerabilities?. Proceedings of the IEEE, 104(6), 1339-1353.
  • Haloho, L. S., & Supriyadi, A. A. (2024). Utilization of satellite technology in communication systems, disaster monitoring, border surveillance, and military intelligence: A literature review. Remote Sensing Technology in Defense and Environment, 1(1), 36-44.
  • Humphreys, T. E., Ledvina, B. M., Psiaki, M. L., O’Hanlon, B. W., & Kintner, P. M. (2013). Assessing the spoofing threat: Development of a portable GPS civilian spoofer. Proceedings of the Institute of Navigation GNSS Conference, 2314-2325Selbesoğlu, H. Ş., Barutçu, B., & Çökelez, A. (2021). The Brief History of Early Marine-Navigation. Advanced Geomatics, 1(1), 14-20.
  • ICAO. (2021). Performance-Based Navigation (PBN) Manual. International Civil Aviation Organization.
  • Iadnewa, (2022). https://iadnews.in/china-abruptly-restricts-the-use-of-beidou-along-borders-with-india/ (Access date: 18.04.2025)
  • Jhanjhi, N. Z., Gaur, L., & Khan, N. A. (2024). Global Navigation Satellite Systems for Logistics: Cybersecurity Issues and Challenges. Cybersecurity in the Transportation Industry, 49-67.
  • Johnson, G. W., Swaszek, P. F., Hoppe, M., Grant, A., & Šafář, J. (2017). Initial results of MF-DGNSS R-Mode as an alternative position navigation and timing service. Kaplan, E. D., & Hegarty, C. J. (2017). Understanding GPS/GNSS: Principles and Applications (3rd ed.). Artech House.
  • Koca, B., & Ceylan, A. (2018). Uydu konum belirleme sistemlerindeki (GNSS) güncel durum ve son gelişmeler. Geomatik, 3(1), 63-73.
  • Koca, B. (2019). GNSS sistemlerindeki güncel durum ve son gelişmelerin incelenmesi.
  • Kugler, D. (1999). Integration of GPS and Loran-C/Chayka: A European Perspective. NAVIGATION: Journal of the Institute of Navigation, 46(1), 1-12.
  • Li, X., Cheng, F., Li, Y., Shen, P., Hu, Y., & Lu, X. (2024). DGVINS: tightly coupled differential GNSS/visual/inertial for robust positioning based on optimization approach. Measurement Science and Technology, 35(8), 086307.
  • NDTV, (2023) “Planes losing gps signal over middle-east, indian regulator flags threat”. https://www.ndtv.com/india- news/planes- losing- gps- signal- over- middle- east- indian- regulator- raises- concern- 4602298
  • Offermans, G., Bartlett, S., & Schue, C. (2017). Providing a resilient timing and UTC service using eLoran in the United States. Navigation: Journal of The Institute of Navigation, 64(3), 339-349.
  • Osechas, O., & McGraw, G. (2025, January). Terrestrial Navigation Alternatives to Support PBN for Current and Future Aviation. In Proceedings of the 2025 International Technical Meeting of The Institute of Navigation (pp. 253-267).
  • Petrovski II, I. G. (2024). Instrument of Choice: GNSS. In The Ionosphere with GNSS SDR: Specialized Software-Defined Radio for In-Depth Ionospheric Research (pp. 77-144). Cham: Springer International Publishing.
  • Reuters. (2018, November 13). Norway accuses Russia of disrupting GPS signals during NATO drill. Retrieved from. https://www.reuters.com/article/world/norway-says-it-proved-russian-gps-interference-during-nato-exercises-idUSKCN1QZ1WM/(Access date: 10.04.2025)
  • Sobel, D. (2004). Longitude: The true story of a lone genius who solved the greatest scientific problem of his time. Academy of Management Learning and Education, 3, 220-220.
  • Son, P. W., Rhee, J. H., & Seo, J. (2017). Novel multichain-based Loran positioning algorithm for resilient navigation. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 666-679.
  • Son, P. W., & Fang, T. H. (2024). Enhancing coastal air navigation: eLoran 3D positioning and cycle slip mitigation. IEEE Access.
  • Steiner, J., Pleninger, S., & Hospodka, J. (2024, April). Assessing the Vulnerability of Aviation Systems to GNSS Meaconing Attacks. In 2024 New Trends in Civil Aviation (NTCA)(pp. 213-218). IEEE Trýb, J., & Hospodka, J. (2025). GNSS Interference and Security: Impacts on Critical Infrastructure and Mitigation Strategies. Procedia Computer Science, 253, 2635-2644.
  • Spilker Jr, J. J., Axelrad, P., Parkinson, B. W., & Enge, P. (Eds.). (1996). Global positioning system: theory and applications, volume I. American Institute of Aeronautics and Astronautics.
  • Tavasci, L., Nex, F., & Gandolfi, S. (2024). Reliability of Real-Time Kinematic (RTK) Positioning for Low-Cost Drones’ Navigation across Global Navigation Satellite System (GNSS) Critical Environments. Sensors (Basel, Switzerland), 24(18), 6096.
  • TUALCOM (2022). https://www.tualcom.com/trnav-turkiyenin-milli-konumlama-ve-zamanlama-sistemi/(Access date: 11.04.2025)
  • TÜBİTAK SAGE. (2022). Yerli Navigasyon Sistemleri Ar-Ge Yol Haritası Raporu.
  • van Toll, W. G., Cook IV, A. F., & Geraerts, R. (2011). Multi-Layered Navigation Meshes. ASCI-IPA-SIKS tracks, ICT. OPEN, 317-323.
  • Yu, A., Kolotylo, I., Hashim, H. A., & Eltoukhy, A. E. (2025). Electronic Warfare Cyberattacks, Countermeasures and Modern Defensive Strategies of UAV Avionics: A Survey. IEEE Access.
  • Zhang, C., Wang, D., & Wu, J. (2024). Two-Dimensional Directions Determination for GNSS Spoofing Source Based on MEMS-Based Dual-GNSS/INS Integration. Remote Sensing, 16(23), 4568.
  • Wang, L., Chen, L., Li, B., Liu, Z., Li, Z., & Lu, Z. (2024). Development status and challenges of anti-spoofing technology of GNSS/INS integrated navigation. Frontiers in Physics, 12, 1425084.
  • Wen, X., Melgård, T., de Vries, R., Vigen, E., & Panosyan, A. (2025, January). Real-Time Multi-Constellation Navigation Message Authentication for Enhanced GNSS Security. In Proceedings of the 2025 International Technical Meeting of The Institute of Navigation (pp. 464-478).
  • Wu, D. L. (2024). GNSS Signal Jamming as Observed From Radio Occultation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

STRATEGIC ROLE OF GNSS IN SECURITY TECHNOLOGIES AND APPROACHES TO NATIONAL TERRESTRIAL NAVIGATION SYSTEM

Yıl 2025, Sayı: Kolluk Uygulamaları ve Güvenlik Teknolojileri Özel Sayısı, 233 - 257, 27.10.2025

Öz

Global Satellite Navigation Systems (GNSS) have become a critical infrastructure element in both civilian and military areas of the modern world. Thanks to the high-accuracy location, time and direction data they provide in the transportation, energy, finance and security sectors, GNSS systems have a wide range of use from daily life to strategic operations. However, this widespread use has brought with it serious security threats such as being vulnerable to jammer and spoofer attacks due to weak signal structure, geopolitical dependency and systemic collapse risks. These threats make GNSS systems vulnerable, especially in electronic warfare and cyber attack environments. This article analyzes the effects of strategic dependency on GNSS on national security and emphasizes the importance of developing national terrestrial navigation systems as an alternative solution. Terrestrial systems such as eLoran, DGNSS and RTK stand out as complementary and backup to GNSS thanks to their strong signal structures, local controllability and jammer/spoofer resistance. In Türkiye, the establishment of a national terrestrial navigation infrastructure has become a necessity that must be carried out in parallel with defense industry strategies and national technology initiatives. In this regard, multi-layered navigation systems (GNSS + terrestrial + inertial systems) are suggested as a critical strategy for the sustainability of national security.

Kaynakça

  • Aktuğ, Ş. (2015). Art Of Celestial Navigation. İstanbul: Piri Reis Üniversitesi Yayınları.
  • Androjna, A., Brcko, T., Pavic, I., & Greidanus, H. (2020). Assessing cyber challenges of maritime navigation. Journal of Marine Science and Engineering, 8(10), 776.
  • Androjna, A., & Perkovič, M. (2021). Impact of spoofing of navigation systems on maritime situational awareness. Transactions on Maritime Science, 10(02), 361-373.
  • Borodacz, K., & Szczepański, C. (2024). GNSS denied navigation system for the manoeuvring flying objects. Aircraft Engineering and Aerospace Technology, 96(1), 63-72.
  • Dovis, F. (Ed.). (2015). GNSS interference threats and countermeasures. Artech House.
  • Duraklar, K. (2025) FPGA-Based Embedded System for Real-Time Detection and Analysis of RF Signals in Tactical Electronic Warfare. 2nd International Conference on Engineering, Natural Sciences, and Technological Developments (ICENSTED 2025), 493.
  • Enge, P. K. (1994). The global positioning system: Signals, measurements, and performance. International Journal of Wireless Information Networks, 1, 83-105.
  • Fredeluces, E., Ozeki, T., Kubo, N., & El-Mowafy, A. (2024). Modified RTK-GNSS for challenging environments. Sensors, 24(9), 2712.
  • Göde, E., Teoman, A., Kushan, M. C., Tonbul, K., Öğünç, G. İ., & Daz, B. (2024). Global Navigation Satellite System (GNSS) Independent Navigation for Unmanned Aerial Vehicles (UAV). Journal of Aviation Research, 6(1), 53-88.
  • GPS (2025). https://www-gps-gov.translate.goog/systems/gnss/?_x_tr_sl=en&_x_tr_tl=tr&_x_tr_hl=tr&_x_tr_pto=tc (Access date: 22.04.2025)
  • Grejner-Brzezinska, D. A., Toth, C. K., Moore, T., Raquet, J. F., Miller, M. M., & Kealy, A. (2016). Multisensor navigation systems: A remedy for GNSS vulnerabilities?. Proceedings of the IEEE, 104(6), 1339-1353.
  • Haloho, L. S., & Supriyadi, A. A. (2024). Utilization of satellite technology in communication systems, disaster monitoring, border surveillance, and military intelligence: A literature review. Remote Sensing Technology in Defense and Environment, 1(1), 36-44.
  • Humphreys, T. E., Ledvina, B. M., Psiaki, M. L., O’Hanlon, B. W., & Kintner, P. M. (2013). Assessing the spoofing threat: Development of a portable GPS civilian spoofer. Proceedings of the Institute of Navigation GNSS Conference, 2314-2325Selbesoğlu, H. Ş., Barutçu, B., & Çökelez, A. (2021). The Brief History of Early Marine-Navigation. Advanced Geomatics, 1(1), 14-20.
  • ICAO. (2021). Performance-Based Navigation (PBN) Manual. International Civil Aviation Organization.
  • Iadnewa, (2022). https://iadnews.in/china-abruptly-restricts-the-use-of-beidou-along-borders-with-india/ (Access date: 18.04.2025)
  • Jhanjhi, N. Z., Gaur, L., & Khan, N. A. (2024). Global Navigation Satellite Systems for Logistics: Cybersecurity Issues and Challenges. Cybersecurity in the Transportation Industry, 49-67.
  • Johnson, G. W., Swaszek, P. F., Hoppe, M., Grant, A., & Šafář, J. (2017). Initial results of MF-DGNSS R-Mode as an alternative position navigation and timing service. Kaplan, E. D., & Hegarty, C. J. (2017). Understanding GPS/GNSS: Principles and Applications (3rd ed.). Artech House.
  • Koca, B., & Ceylan, A. (2018). Uydu konum belirleme sistemlerindeki (GNSS) güncel durum ve son gelişmeler. Geomatik, 3(1), 63-73.
  • Koca, B. (2019). GNSS sistemlerindeki güncel durum ve son gelişmelerin incelenmesi.
  • Kugler, D. (1999). Integration of GPS and Loran-C/Chayka: A European Perspective. NAVIGATION: Journal of the Institute of Navigation, 46(1), 1-12.
  • Li, X., Cheng, F., Li, Y., Shen, P., Hu, Y., & Lu, X. (2024). DGVINS: tightly coupled differential GNSS/visual/inertial for robust positioning based on optimization approach. Measurement Science and Technology, 35(8), 086307.
  • NDTV, (2023) “Planes losing gps signal over middle-east, indian regulator flags threat”. https://www.ndtv.com/india- news/planes- losing- gps- signal- over- middle- east- indian- regulator- raises- concern- 4602298
  • Offermans, G., Bartlett, S., & Schue, C. (2017). Providing a resilient timing and UTC service using eLoran in the United States. Navigation: Journal of The Institute of Navigation, 64(3), 339-349.
  • Osechas, O., & McGraw, G. (2025, January). Terrestrial Navigation Alternatives to Support PBN for Current and Future Aviation. In Proceedings of the 2025 International Technical Meeting of The Institute of Navigation (pp. 253-267).
  • Petrovski II, I. G. (2024). Instrument of Choice: GNSS. In The Ionosphere with GNSS SDR: Specialized Software-Defined Radio for In-Depth Ionospheric Research (pp. 77-144). Cham: Springer International Publishing.
  • Reuters. (2018, November 13). Norway accuses Russia of disrupting GPS signals during NATO drill. Retrieved from. https://www.reuters.com/article/world/norway-says-it-proved-russian-gps-interference-during-nato-exercises-idUSKCN1QZ1WM/(Access date: 10.04.2025)
  • Sobel, D. (2004). Longitude: The true story of a lone genius who solved the greatest scientific problem of his time. Academy of Management Learning and Education, 3, 220-220.
  • Son, P. W., Rhee, J. H., & Seo, J. (2017). Novel multichain-based Loran positioning algorithm for resilient navigation. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 666-679.
  • Son, P. W., & Fang, T. H. (2024). Enhancing coastal air navigation: eLoran 3D positioning and cycle slip mitigation. IEEE Access.
  • Steiner, J., Pleninger, S., & Hospodka, J. (2024, April). Assessing the Vulnerability of Aviation Systems to GNSS Meaconing Attacks. In 2024 New Trends in Civil Aviation (NTCA)(pp. 213-218). IEEE Trýb, J., & Hospodka, J. (2025). GNSS Interference and Security: Impacts on Critical Infrastructure and Mitigation Strategies. Procedia Computer Science, 253, 2635-2644.
  • Spilker Jr, J. J., Axelrad, P., Parkinson, B. W., & Enge, P. (Eds.). (1996). Global positioning system: theory and applications, volume I. American Institute of Aeronautics and Astronautics.
  • Tavasci, L., Nex, F., & Gandolfi, S. (2024). Reliability of Real-Time Kinematic (RTK) Positioning for Low-Cost Drones’ Navigation across Global Navigation Satellite System (GNSS) Critical Environments. Sensors (Basel, Switzerland), 24(18), 6096.
  • TUALCOM (2022). https://www.tualcom.com/trnav-turkiyenin-milli-konumlama-ve-zamanlama-sistemi/(Access date: 11.04.2025)
  • TÜBİTAK SAGE. (2022). Yerli Navigasyon Sistemleri Ar-Ge Yol Haritası Raporu.
  • van Toll, W. G., Cook IV, A. F., & Geraerts, R. (2011). Multi-Layered Navigation Meshes. ASCI-IPA-SIKS tracks, ICT. OPEN, 317-323.
  • Yu, A., Kolotylo, I., Hashim, H. A., & Eltoukhy, A. E. (2025). Electronic Warfare Cyberattacks, Countermeasures and Modern Defensive Strategies of UAV Avionics: A Survey. IEEE Access.
  • Zhang, C., Wang, D., & Wu, J. (2024). Two-Dimensional Directions Determination for GNSS Spoofing Source Based on MEMS-Based Dual-GNSS/INS Integration. Remote Sensing, 16(23), 4568.
  • Wang, L., Chen, L., Li, B., Liu, Z., Li, Z., & Lu, Z. (2024). Development status and challenges of anti-spoofing technology of GNSS/INS integrated navigation. Frontiers in Physics, 12, 1425084.
  • Wen, X., Melgård, T., de Vries, R., Vigen, E., & Panosyan, A. (2025, January). Real-Time Multi-Constellation Navigation Message Authentication for Enhanced GNSS Security. In Proceedings of the 2025 International Technical Meeting of The Institute of Navigation (pp. 464-478).
  • Wu, D. L. (2024). GNSS Signal Jamming as Observed From Radio Occultation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Siber Güvenlik ve Gizlilik (Diğer)
Bölüm Makaleler
Yazarlar

Vedat Yılmaz 0000-0002-3112-9371

Yayımlanma Tarihi 27 Ekim 2025
Gönderilme Tarihi 28 Nisan 2025
Kabul Tarihi 9 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Kolluk Uygulamaları ve Güvenlik Teknolojileri Özel Sayısı

Kaynak Göster

APA Yılmaz, V. (2025). STRATEGIC ROLE OF GNSS IN SECURITY TECHNOLOGIES AND APPROACHES TO NATIONAL TERRESTRIAL NAVIGATION SYSTEM. Güvenlik Bilimleri Dergisi(Kolluk Uygulamaları ve Güvenlik Teknolojileri Özel Sayısı), 233-257. https://doi.org/10.28956/gbd.1685901

24347   14728   14731   14739   


Bu dergi creative commons Atıf-GayriTicari 4.0 Uluslararası lisansı ile lisanslanmıştır.   29846