Derleme
BibTex RIS Kaynak Göster

POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI

Yıl 2022, , 252 - 265, 25.02.2022
https://doi.org/10.15237/gida.GD21145

Öz

Probiyotiklerin gıda sektöründe kullanımı oldukça yaygındır, buna rağmen gıdalara canlı mikroorganizma eklenmesi ile ilgili teknolojik problemler ve sağlık riskleri ile ilgili tartışmalar devam etmektedir. Son yıllarda probiyotikler yerine postbiyotiklerin gıdalarda kullanımı ile ilgili çalışmalar hızla artmaktadır. Postbiyotikler, probiyotikler tarafından üretilen ekzopolisakkaritler, kısa zincirli yağ asitleri, enzimler, peptitler, bakteriyosinler, vitaminler, plazmalojenler, peptidoglikanlar gibi moleküllerdir. Gıdalara postbiyotiklerin eklenmesiyle, depolama sürecinde kalite özelliklerini kaybetmeyen uzun raf ömrüne sahip kaliteli ve hem gıda matriksi hem de tüketici üzerine belirgin olumlu etkilere sahip fonksiyonel gıdaların geliştirilmesine yönelik çalışmalar hız kazanmaktadır. Bu makalede postbiyotiklerin gıda formülasyonlarında kullanımına yönelik son yıllarda yapılan çalışmalar derlenmiştir. Lactobacillus suşlarından elde edilen postbiyotiklerin; farklı gıda ürünlerinde ve ayrıca ambalaj malzemelerinde antimikrobiyal ve antioksidan ajan olarak başarılı şekilde kullanıldığı anlaşılmaktadır. Postbiyotiklerin bu etkilerin yanısıra biyoaktif peptit içerikleri ile fonksiyonel gıda tasarımında ve gıda kontaminantlarının biyodönüşümü için kullanımları da güncel araştırma konularındandır.

Kaynakça

  • Aguayo, M. D. C. L., Burgos, M. J. G., Pulido, R. P., Gálvez, A., ve López, R. L. (2016). Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. Innovative Food Science & Emerging Technologies, 35, 177-183. https://doi.org/10.1016/j.ifset.2016.05.006
  • Aguilar-Toalá, J. E., R. Garcia-Varela, H. S. Garcia, V. Mata-Haro, A. F. González-Córdova, B. Vallejo-Cordoba, ve A. Hernández-Mendoza. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science and Technology 75 201:105–114. https://doi.org/10.1016/j.tifs.2018.03.009
  • Ahmad Rather, I., Seo, B. J., Rejish Kumar, V. J., Choi, U. H., Choi, K. H., Lim, J. H., Park, Y. H. (2013). Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML 007 and its application as a food preservative. Letters in applied microbiology, 57(1), 69-76. https://doi.org/10.1111/lam.12077
  • Ale, E. C., Perezlindo, M. J., Pavón, Y., Peralta, G. H., Costa, S., Sabbag, N., Bergamini C., Reinheimer J.A., Rinetti, A. G. (2016). Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive. Food Research International, 90, 259-267. https://doi.org/10.1016/j.foodres.2016.10.045
  • Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezai-Mokarram, R.,Sowti-Khiabani M. (2021). Fermentation Optimization for Co-production of Postbiotics by Bifidobacterium lactis BB12 in Cheese Whey. Waste Biomass Valor 12, 5869–5884 https://doi.org/10.1007/s12649-021-01429-7
  • Ananou, S., H. Zentar, M., Martínez-Bueno, A., Gálvez, M., Maqueda, E. Valdivia. (2014). The impact of enterocin AS-48 on the shelf-life and safety of sardines (Sardina pilchardus) under different storage conditions. Food Microbiology 44:185–95. https://doi.org/10.1016/j.fm.2014.06.008
  • Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  • Arrioja-Bretón, D., E. Mani-López, E., Palou, A., López-Malo. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 115(3):107286. https://doi.org/10.1016/j.foodcont.2020.107286
  • Aydın, B., Çiydem, T., Kaya, E., Açık, L. (2021). Evaluation of the Antioxidant Effects of Postbiotics and Paraprobiotics in Lactic Acid Bacteria Isolated from Traditional Fermented Sausages. European Journal of Science and Technology, (28), 849–852. https://doi.org/10.31590/ejosat.1011409
  • Barbieri, F., Montanari, C., Gardini, F., Tabanelli, G. (2019). Biogenic amine production by lactic acid bacteria: A review. Foods, 8(1), 17. https://doi.org/10.3390/foods8010017
  • Barros, C. P, Guimarães, J. T, Esmerino, E. A, Duarte, M. Carmela KH, Silva, M. C, Silva, R., Ferreira, B. M, Sant’Ana, A. S, Freitas, M. Q, Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current opinion in food science, 32, 1-8. doi: 10.1016/j.cofs.2019.12.003
  • Chang, H. M., Foo, H. L., Loh, T. C., Lim, E. T. C., and Abdul Mutalib, N. E. (2021). Comparative Studies of Inhibitory and Antioxidant Activities, and Organic Acids Compositions of Postbiotics Produced by Probiotic Lactiplantibacillus plantarum Strains Isolated From Malaysian Foods. Frontiers in Veterinary Science, 7, 1182. https://doi.org/10.3389/FVETS.2020.602280/BIBTEX
  • Cuevas-González, P. F., Liceaga, A. M., Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research International, 109502. https://doi.org/10.1016/j.foodres.2020.109502
  • da Silva Sabo, Sabrina, Noelia Pérez-Rodríguez, José Manuel Domínguez, ve Ricardo Pinheiro de Souza Oliveira. (2017). Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat. Food Research International 99(4):762–69. https://doi.org/10.1016/j.foodres.2017.05.026
  • de Almada, C. N., Almada, C. N., Martinez, R. C., & Sant'Ana, A. S. (2016). Paraprobiotics: evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in food science & technology, 58, 96-114. https://doi.org/10.1016/j.tifs.2016.09.011
  • del Carmen Beristain-Bauza, S., Mani-López, E., Palou, E., López-Malo, A. (2017). Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food microbiology, 62, 207-211. https://doi.org/10.1016/j.fm.2016.10.024
  • Dertli, E., Yilmaz, M. T., Tatlisu, N. B., Toker, O. S., Cankurt, H., & Sagdic, O. (2016). Effects of in situ exopolysaccharide production and fermentation conditions on physicochemical, microbiological, textural and microstructural properties of Turkish-type fermented sausage (sucuk). Meat Science, 121, 156-165 https://doi.org/10.1016/j.meatsci.2016.06.008
  • Doğan, İ. S., Akbaş, Ö., Tunçtürk, Y. (2012). Yağı azaltılmış kek üretiminde ekzopolisakkarit kullanımı. Gıda, 37(3), 141-148. https://dergipark.org.tr/en/pub/gida/issue/6929/92519
  • Dunand, E., Burns, P., Binetti, A., Bergamini, C., Peralta, G. H., Forzani, L., Reinheimer, J., & Vinderola, G. (2019). Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. Journal of applied microbiology, 127(1), 219–229. https://doi.org/10.1111/jam.14276
  • Ebrahimi, M., Sadeghi, A., Rahimi, D., Purabdolah, H., & Shahryari, S. (2021). Postbiotic and Anti-aflatoxigenic Capabilities of Lactobacillus kunkeei as the Potential Probiotic LAB Isolated from the Natural Honey. Probiotics and Antimicrobial Proteins, 13(2), 343-355. https://doi.org/10.1007/s12602-020-09697-w
  • FAO / WHO. (2002). Guidelines for the evaluation of probiotics in food, report of a joint FAO/WHO working group on drafting guideline for the evaluation of probiotic in food. World Health Organization, Geneva.
  • Gao, J., Li, Y., Wan, Y., Hu, T., Liu, L., Yang, S., Gong, Z., Zeng, Q., Wei, Y., Yang, W., Zeng, Z., He, X., Huang, S. H., Cao, H. (2019). A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Frontiers in microbiology, 10, 477. https://doi.org/10.3389/fmicb.2019.00477
  • George-Okafor, U., Ozoani, U., Tasie, F., & Mba-Omeje, K. (2020). The efficacy of cell-free supernatants from Lactobacillus plantarum Cs and Lactobacillus acidophilus ATCC 314 for the preservation of home-processed tomato-paste. Scientific African, 8, e00395. https://doi.org/10.1016/j.sciaf.2020.e00395
  • Gómez-Sala, B., Herranz, C., Díaz-Freitas, B., Hernández, P. E., Sala, A., & Cintas, L. M. (2016). Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology, 223, 41-49. https://doi.org/10.1016/j.ijfoodmicro.2016.02.005
  • Gökırmaklı, Ç., Üçgül, B., & Güzel-Seydim, Z. B. (2021). Fonksiyonel gıda kavramına yeni bir bakış: Postbiyotikler. GIDA/The Journal of FOOD, 46(4). https://doi.org/10.15237/gida.GD21035
  • Haarman, M., & Knol, J. (2006). Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Applied and environmental microbiology, 72(4), 2359-2365. https://doi.org/10.1128/AEM.72.4.2359-2365.2006
  • Hamad, G. M., Abdelmotilib, N. M., Darwish, A. M., & Zeitoun, A. M. (2020). Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe, 62, 102181.https://doi.org/10.1016/j.anaerobe.2020.102181
  • Hosseini, S. A., Abbasi, A., Sabahi, S., & Khani, N. (2021). Application of Postbiotics Produced By Lactic Acid Bacteria in the Development of Active Food Packaging. Biointerface Research in Applied Chemistry 6164-6183. https://doi.org/10.33263/BRIAC125.61646183
  • Huang, Y., Zhao, S., Yao, K., Liu, D., Peng, X., Huang, J., Huang Y., Li, L. (2020). Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from Lactarius volemus Fr. using three probiotics. International Journal of Dairy Technology, 73(1), 168-181. https://doi.org/10.1111/1471-0307.12653
  • Jonkuvienė, D., Vaičiulytė-Funk, L., Šalomskienė, J., Alenčikienė, G., Mieželienė, A. (2016). Potential of Lactobacillus reuteri from spontaneous sourdough as a starter additive for improving quality parameters of bread. Food Technology and Biotechnology, 54(3), 342. doi: 10.17113/ftb.54.03.16.4143
  • Jo, D. M., Park, S. K., Khan, F., Kang, M. G., Lee, J. H., Kim, Y. M. (2021). An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control, 123, 107731. https://doi.org/10.1016/j.foodcont.2020.107731
  • Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384. https://doi.org/10.1016/j.tifs.2021.02.014
  • Kuley, E., Kuscu, M. M., Durmus, M., Ucar, Y. (2021). Inhibitory activity of Co-microencapsulation of cell free supernatant from Lactobacillus plantarum with propolis extracts towards fish spoilage bacteria. LWT, 146, 111433. https://doi.org/10.1016/j.lwt.2021.111433
  • Le, N., Bach, L., Nguyen, D., Le, T., Pham, K., Nguyen, D., Hoang Thi, T. (2019). Evaluation of factors affecting antimicrobial activity of bacteriocin from Lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health, 16(6), 1017. doi:10.3390/ijerph16061017
  • Lindfors, K., Ciacci, C., Kurppa, K., Lundin, K. E., Makharia, G. K., Mearin, M. L., Murray, J.A., Verdu, E.F., Kaukinen, K. (2019). Coeliac disease. Nature Reviews Disease Primers, 5(1), 1-18. https://doi.org/10.1038/s41572-018-0054-z
  • Lynch, K. M., Coffey, A., Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food research international, 110, 52-61. https://doi.org/10.1016/j.foodres.2017.03.012
  • Malheiros, Patrícia S., Iolanda M. Cuccovia, ve Bernadette D. G. M. Franco. (2016). Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a. Food Control 63:158–64. https://doi.org/10.1016/j.foodcont.2015.11.0377
  • Mantovan, J., Bersaneti, G. T., Faria-Tischer, P. C., Celligoi, M. A. P. C., & Mali, S. (2018). Use of microbial levan in edible films based on cassava starch. Food Packaging and Shelf Life, 18, 31-36. https://doi.org/10.1016/j.fpsl.2018.08.003
  • Montiel, R., Martín-Cabrejas, I., Langa, S., El Aouad, N., Arqués, J. L., Reyes, F., Medina, M. (2014). Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food microbiology, 44, 1-5. https://doi.org/10.1016/j.fm.2014.05.006
  • Moradi, M., Tajik, H., Mardani, K., & Ezati, P. (2019)a. Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef. In Veterinary Research Forum (Vol. 10, No. 3, p. 193). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. 10.30466/vrf.2019.101419.2417
  • Moradi, M., Mardani, K., & Tajik, H. (2019)b. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT, 111, 457-464. https://doi.org/10.1016/j.lwt.2019.05.072
  • Moradi, M., Kousheh, S. A., Almasi, H., Alizadeh, A., Guimarães, J. T., Yılmaz, N., & Lotfi, A. (2020). Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3390-3415. https://doi.org/10.1111/1541-4337.12613
  • Moradi, M., Guimarães, J. T., Sahin, S. (2021)a. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science, 40, 33-39. https://doi.org/10.1016/j.cofs.2020.06.001
  • Moradi, M., Molaei, R., & Guimarães, J. T. (2021)b. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143, 109722.. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Mouafo, H. T., Mbawala, A., Tanaji, K., Somashekar, D., & Ndjouenkeu, R. (2020). Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT, 133, 110071. https://doi.org/10.1016/j.lwt.2020.110071
  • Narsaiah, K., Wilson, R.A., Gokul, K., Mandge, H.M., Jha, S.N., Bhadwal, S., Anurag, R.K., Malik, R.K., Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technoogy. 100, 212–218. https://doi.org/10.1016/j.postharvbio.2014.10.003
  • Nataraj, B.H., Ali, S.A., Behare, P.V. Yadav H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Fact 19, 168 https://doi.org/10.1186/s12934-020-01426-w
  • Ołdak, Aleksandra, Dorota Zielińska, Anna Łepecka, Ewa Długosz, ve Danuta Kołożyn-Krajewska. (2020). Lactobacillus plantarum strains ısolated from polish regional cheeses exhibit anti-staphylococcal activity and selected probiotic properties. Probiotics and Antimicrobial Proteins 12(3):1025–38. https://doi.org/10.1007/s12602-019-09587-w
  • Ötleş, S., Bakar, B., and Türköz, B. K. (2022). Bioinformatic Analysis. In Bioactive Peptides from Food (pp. 321–346). Boca Raton: CRC Press. https://doi.org/10.1201/9781003106524-20
  • Pinilla, C. M. B., Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative food science & emerging technologies, 36, 287-293. https://doi.org/10.1016/j.ifset.2016.07.017
  • Rad, A. H., Aghebati-Maleki, L., Kafil, H. S., Gilani, N., Abbasi, A., Khani, N. (2021). Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety. Biointerface Res Appl Chem, 11, 14529-14544. https://doi.org/10.33263/BRIAC116.1452914544
  • Ruengvisesh, S., Khunrae, P., Rattanarojpong, T., Jongruja, N. (2020). The combined effect of formic acid and Nisin on potato spoilage. Biocatalysis and Agricultural Biotechnology, 24, 101523. https://doi.org/10.1016/j.bcab.2020.101523 Romero-Luna, H. E., Hernández-Mendoza, A., González-Córdova, A. F., and Peredo-Lovillo, A. (2022). Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chemistry: X, 13, 100196. https://doi.org/10.1016/J.FOCHX.2021.100196
  • Rühmkorf, C., Rübsam, H., Becker, T., Bork, C., Voiges, K., Mischnick, P., Brandt M.J., Vogel, R. F. (2012). Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. European Food Research and Technology, 235(1), 139-146. https://doi.org/10.1007/s00217-012-1746-3
  • Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. (2015). Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & function, 6(3), 679-693. https://doi.org/10.1039/C4FO00529E
  • Shehata, M. G., Badr, A. N., El Sohaimy, S. A., Asker, D., Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1), 71-78. https://doi.org/10.1016/j.aoas.2019.05.002
  • Shukla, A., Mehta, K., Parmar, J., Pandya, J., Saraf, M. (2019). Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. European Polymer Journal, 119, 298-310. https://doi.org/10.1016/j.eurpolymj.2019.07.044
  • Skariyachan, S., Govindarajan, S. (2019). Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical preservatives. Internationl journal of food microbiology, 291, 189-196. https://doi.org/10.1016/j.ijfoodmicro.2018.12.002
  • Taşdemir, A. (2017). Probiyotikler, prebiyotikler, sinbiyotikler. Sağlık Akademisi Kastamonu, 2(1), 71-88. https://doi.org/10.25279/sak.300045
  • Tenea, G. N., & Barrigas, A. (2018). The efficacy of bacteriocin-containing cell-free supernatant from Lactobacillus plantarum Cys5-4 to control pathogenic bacteria growth in artisanal beverages. International Food Research Journal, 25(5).
  • Tenea, G. N., Guaña, J. M. (2019). Inhibitory substances produced by native Lactobacillus plantarum UTNCys5-4 control microbial population growth in meat. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/9516981
  • Tenea G. N., Pozo T.D. (2019). Antimicrobial Peptides from Lactobacillus plantarum UTNGt2 Prevent Harmful Bacteria Growth on Fresh Tomatoes. J. Microbiol. Biotechnol. 29:1553-1560. https://doi.org/10.4014/jmb.1904.04063
  • Tenea, G. N., Olmedo, D., Ortega, C. (2020). Peptide-based formulation from lactic acid bacteria Impairs the pathogen growth in Ananas comosus (Pineapple). Coatings, 10(5), 457. https://doi.org/10.3390/coatings10050457
  • Tumbarski, Y., Nikolova, R., Petkova, N., Ivanov, I., & Lante, A. (2019). Biopreservation of Fresh Strawberries by Carboxymethyl Cellulose Edible Coatings Enriched with a Bacteriocin from Bacillus methylotrophicus BM47. Food technology and biotechnology, 57(2), 230–237. https://doi.org/10.17113/ftb.57.02.19.6128
  • Uğur, E., Bektaş, A., Ulusoy, M., Öner, Z. (2021). Paraprobiyotikler, postbiyotikler ve sağlık üzerine etkileri. The Journal of Food, 46(2), 428–442. https://doi.org/10.15237/gida.
  • Venegas-Ortega, M. G., Flores-Gallegos, A. C., Martínez-Hernández, J. L., Aguilar, C. N., and Nevárez-Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455
  • Wang, J., Wu, T., Fang, X., Yang, Z. (2019). Manufacture of low-fat Cheddar cheese by exopolysaccharide-producing Lactobacillus plantarum JLK0142 and its functional properties. Journal of dairy science, 102(5), 3825-3838. https://doi.org/10.3168/jds.2018-15154
  • Yang, Tongxiang, Kongyang Wu, Fang Wang, Xiaolin Liang, Qingsu Liu, Guanlin Li, ve Quanyang Li. (2014). Effect of exopolysaccharides from lactic acid bacteria on the texture and microstructure of buffalo yoghurt. International Dairy Journal 34(2):252–56. https://doi.org/10.1016/j.idairyj.2013.08.007
  • Yordshahi, A. S., Moradi, M., Tajik, H., Molaei, R. (2020). Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. International journal of food microbiology, 321, 108561. https://doi.org/10.1016/j.ijfoodmicro.2020.108561
  • Żółkiewicz, J., Marzec, A., Ruszczyński, M., Feleszko, W. (2020). Postbiotics—a step beyond pre-and probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189

POSTBIOTICS AND THEIR USE IN FOOD INDUSTRY

Yıl 2022, , 252 - 265, 25.02.2022
https://doi.org/10.15237/gida.GD21145

Öz

The use of probiotics in the food industry is quite common, yet there are discussions on technological problems and health risks. Therefore use of postbiotics instead of probiotics in food products gained attention. Postbiotics are molecules secreted by probiotics; such as exopolysaccharides, short chain fatty acids, enzymes, peptides, bacteriocins, vitamins, plasmalogens, peptidoglycans. Studies on postbiotic added foods are increasing for the development of functional foods with longer shelf life, which do not lose their quality properties during storage, and which have significant positive effects on both the food matrix and the consumer. In this article, recent studies on the use of postbiotics in food formulations are reviewed. Studies show that postbiotics produced by Lactobacillus spp. are successfully used as antimicrobial and antioxidant agents in different food products and packaging materials. Furthermore, the use of postbiotics in functional food design and biotransformation of food contaminants are also current research topics.

Kaynakça

  • Aguayo, M. D. C. L., Burgos, M. J. G., Pulido, R. P., Gálvez, A., ve López, R. L. (2016). Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. Innovative Food Science & Emerging Technologies, 35, 177-183. https://doi.org/10.1016/j.ifset.2016.05.006
  • Aguilar-Toalá, J. E., R. Garcia-Varela, H. S. Garcia, V. Mata-Haro, A. F. González-Córdova, B. Vallejo-Cordoba, ve A. Hernández-Mendoza. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science and Technology 75 201:105–114. https://doi.org/10.1016/j.tifs.2018.03.009
  • Ahmad Rather, I., Seo, B. J., Rejish Kumar, V. J., Choi, U. H., Choi, K. H., Lim, J. H., Park, Y. H. (2013). Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML 007 and its application as a food preservative. Letters in applied microbiology, 57(1), 69-76. https://doi.org/10.1111/lam.12077
  • Ale, E. C., Perezlindo, M. J., Pavón, Y., Peralta, G. H., Costa, S., Sabbag, N., Bergamini C., Reinheimer J.A., Rinetti, A. G. (2016). Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive. Food Research International, 90, 259-267. https://doi.org/10.1016/j.foodres.2016.10.045
  • Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezai-Mokarram, R.,Sowti-Khiabani M. (2021). Fermentation Optimization for Co-production of Postbiotics by Bifidobacterium lactis BB12 in Cheese Whey. Waste Biomass Valor 12, 5869–5884 https://doi.org/10.1007/s12649-021-01429-7
  • Ananou, S., H. Zentar, M., Martínez-Bueno, A., Gálvez, M., Maqueda, E. Valdivia. (2014). The impact of enterocin AS-48 on the shelf-life and safety of sardines (Sardina pilchardus) under different storage conditions. Food Microbiology 44:185–95. https://doi.org/10.1016/j.fm.2014.06.008
  • Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  • Arrioja-Bretón, D., E. Mani-López, E., Palou, A., López-Malo. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 115(3):107286. https://doi.org/10.1016/j.foodcont.2020.107286
  • Aydın, B., Çiydem, T., Kaya, E., Açık, L. (2021). Evaluation of the Antioxidant Effects of Postbiotics and Paraprobiotics in Lactic Acid Bacteria Isolated from Traditional Fermented Sausages. European Journal of Science and Technology, (28), 849–852. https://doi.org/10.31590/ejosat.1011409
  • Barbieri, F., Montanari, C., Gardini, F., Tabanelli, G. (2019). Biogenic amine production by lactic acid bacteria: A review. Foods, 8(1), 17. https://doi.org/10.3390/foods8010017
  • Barros, C. P, Guimarães, J. T, Esmerino, E. A, Duarte, M. Carmela KH, Silva, M. C, Silva, R., Ferreira, B. M, Sant’Ana, A. S, Freitas, M. Q, Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current opinion in food science, 32, 1-8. doi: 10.1016/j.cofs.2019.12.003
  • Chang, H. M., Foo, H. L., Loh, T. C., Lim, E. T. C., and Abdul Mutalib, N. E. (2021). Comparative Studies of Inhibitory and Antioxidant Activities, and Organic Acids Compositions of Postbiotics Produced by Probiotic Lactiplantibacillus plantarum Strains Isolated From Malaysian Foods. Frontiers in Veterinary Science, 7, 1182. https://doi.org/10.3389/FVETS.2020.602280/BIBTEX
  • Cuevas-González, P. F., Liceaga, A. M., Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research International, 109502. https://doi.org/10.1016/j.foodres.2020.109502
  • da Silva Sabo, Sabrina, Noelia Pérez-Rodríguez, José Manuel Domínguez, ve Ricardo Pinheiro de Souza Oliveira. (2017). Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat. Food Research International 99(4):762–69. https://doi.org/10.1016/j.foodres.2017.05.026
  • de Almada, C. N., Almada, C. N., Martinez, R. C., & Sant'Ana, A. S. (2016). Paraprobiotics: evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in food science & technology, 58, 96-114. https://doi.org/10.1016/j.tifs.2016.09.011
  • del Carmen Beristain-Bauza, S., Mani-López, E., Palou, E., López-Malo, A. (2017). Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food microbiology, 62, 207-211. https://doi.org/10.1016/j.fm.2016.10.024
  • Dertli, E., Yilmaz, M. T., Tatlisu, N. B., Toker, O. S., Cankurt, H., & Sagdic, O. (2016). Effects of in situ exopolysaccharide production and fermentation conditions on physicochemical, microbiological, textural and microstructural properties of Turkish-type fermented sausage (sucuk). Meat Science, 121, 156-165 https://doi.org/10.1016/j.meatsci.2016.06.008
  • Doğan, İ. S., Akbaş, Ö., Tunçtürk, Y. (2012). Yağı azaltılmış kek üretiminde ekzopolisakkarit kullanımı. Gıda, 37(3), 141-148. https://dergipark.org.tr/en/pub/gida/issue/6929/92519
  • Dunand, E., Burns, P., Binetti, A., Bergamini, C., Peralta, G. H., Forzani, L., Reinheimer, J., & Vinderola, G. (2019). Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. Journal of applied microbiology, 127(1), 219–229. https://doi.org/10.1111/jam.14276
  • Ebrahimi, M., Sadeghi, A., Rahimi, D., Purabdolah, H., & Shahryari, S. (2021). Postbiotic and Anti-aflatoxigenic Capabilities of Lactobacillus kunkeei as the Potential Probiotic LAB Isolated from the Natural Honey. Probiotics and Antimicrobial Proteins, 13(2), 343-355. https://doi.org/10.1007/s12602-020-09697-w
  • FAO / WHO. (2002). Guidelines for the evaluation of probiotics in food, report of a joint FAO/WHO working group on drafting guideline for the evaluation of probiotic in food. World Health Organization, Geneva.
  • Gao, J., Li, Y., Wan, Y., Hu, T., Liu, L., Yang, S., Gong, Z., Zeng, Q., Wei, Y., Yang, W., Zeng, Z., He, X., Huang, S. H., Cao, H. (2019). A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Frontiers in microbiology, 10, 477. https://doi.org/10.3389/fmicb.2019.00477
  • George-Okafor, U., Ozoani, U., Tasie, F., & Mba-Omeje, K. (2020). The efficacy of cell-free supernatants from Lactobacillus plantarum Cs and Lactobacillus acidophilus ATCC 314 for the preservation of home-processed tomato-paste. Scientific African, 8, e00395. https://doi.org/10.1016/j.sciaf.2020.e00395
  • Gómez-Sala, B., Herranz, C., Díaz-Freitas, B., Hernández, P. E., Sala, A., & Cintas, L. M. (2016). Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology, 223, 41-49. https://doi.org/10.1016/j.ijfoodmicro.2016.02.005
  • Gökırmaklı, Ç., Üçgül, B., & Güzel-Seydim, Z. B. (2021). Fonksiyonel gıda kavramına yeni bir bakış: Postbiyotikler. GIDA/The Journal of FOOD, 46(4). https://doi.org/10.15237/gida.GD21035
  • Haarman, M., & Knol, J. (2006). Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Applied and environmental microbiology, 72(4), 2359-2365. https://doi.org/10.1128/AEM.72.4.2359-2365.2006
  • Hamad, G. M., Abdelmotilib, N. M., Darwish, A. M., & Zeitoun, A. M. (2020). Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe, 62, 102181.https://doi.org/10.1016/j.anaerobe.2020.102181
  • Hosseini, S. A., Abbasi, A., Sabahi, S., & Khani, N. (2021). Application of Postbiotics Produced By Lactic Acid Bacteria in the Development of Active Food Packaging. Biointerface Research in Applied Chemistry 6164-6183. https://doi.org/10.33263/BRIAC125.61646183
  • Huang, Y., Zhao, S., Yao, K., Liu, D., Peng, X., Huang, J., Huang Y., Li, L. (2020). Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from Lactarius volemus Fr. using three probiotics. International Journal of Dairy Technology, 73(1), 168-181. https://doi.org/10.1111/1471-0307.12653
  • Jonkuvienė, D., Vaičiulytė-Funk, L., Šalomskienė, J., Alenčikienė, G., Mieželienė, A. (2016). Potential of Lactobacillus reuteri from spontaneous sourdough as a starter additive for improving quality parameters of bread. Food Technology and Biotechnology, 54(3), 342. doi: 10.17113/ftb.54.03.16.4143
  • Jo, D. M., Park, S. K., Khan, F., Kang, M. G., Lee, J. H., Kim, Y. M. (2021). An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control, 123, 107731. https://doi.org/10.1016/j.foodcont.2020.107731
  • Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384. https://doi.org/10.1016/j.tifs.2021.02.014
  • Kuley, E., Kuscu, M. M., Durmus, M., Ucar, Y. (2021). Inhibitory activity of Co-microencapsulation of cell free supernatant from Lactobacillus plantarum with propolis extracts towards fish spoilage bacteria. LWT, 146, 111433. https://doi.org/10.1016/j.lwt.2021.111433
  • Le, N., Bach, L., Nguyen, D., Le, T., Pham, K., Nguyen, D., Hoang Thi, T. (2019). Evaluation of factors affecting antimicrobial activity of bacteriocin from Lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health, 16(6), 1017. doi:10.3390/ijerph16061017
  • Lindfors, K., Ciacci, C., Kurppa, K., Lundin, K. E., Makharia, G. K., Mearin, M. L., Murray, J.A., Verdu, E.F., Kaukinen, K. (2019). Coeliac disease. Nature Reviews Disease Primers, 5(1), 1-18. https://doi.org/10.1038/s41572-018-0054-z
  • Lynch, K. M., Coffey, A., Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food research international, 110, 52-61. https://doi.org/10.1016/j.foodres.2017.03.012
  • Malheiros, Patrícia S., Iolanda M. Cuccovia, ve Bernadette D. G. M. Franco. (2016). Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a. Food Control 63:158–64. https://doi.org/10.1016/j.foodcont.2015.11.0377
  • Mantovan, J., Bersaneti, G. T., Faria-Tischer, P. C., Celligoi, M. A. P. C., & Mali, S. (2018). Use of microbial levan in edible films based on cassava starch. Food Packaging and Shelf Life, 18, 31-36. https://doi.org/10.1016/j.fpsl.2018.08.003
  • Montiel, R., Martín-Cabrejas, I., Langa, S., El Aouad, N., Arqués, J. L., Reyes, F., Medina, M. (2014). Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food microbiology, 44, 1-5. https://doi.org/10.1016/j.fm.2014.05.006
  • Moradi, M., Tajik, H., Mardani, K., & Ezati, P. (2019)a. Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef. In Veterinary Research Forum (Vol. 10, No. 3, p. 193). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. 10.30466/vrf.2019.101419.2417
  • Moradi, M., Mardani, K., & Tajik, H. (2019)b. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT, 111, 457-464. https://doi.org/10.1016/j.lwt.2019.05.072
  • Moradi, M., Kousheh, S. A., Almasi, H., Alizadeh, A., Guimarães, J. T., Yılmaz, N., & Lotfi, A. (2020). Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3390-3415. https://doi.org/10.1111/1541-4337.12613
  • Moradi, M., Guimarães, J. T., Sahin, S. (2021)a. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science, 40, 33-39. https://doi.org/10.1016/j.cofs.2020.06.001
  • Moradi, M., Molaei, R., & Guimarães, J. T. (2021)b. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143, 109722.. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Mouafo, H. T., Mbawala, A., Tanaji, K., Somashekar, D., & Ndjouenkeu, R. (2020). Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT, 133, 110071. https://doi.org/10.1016/j.lwt.2020.110071
  • Narsaiah, K., Wilson, R.A., Gokul, K., Mandge, H.M., Jha, S.N., Bhadwal, S., Anurag, R.K., Malik, R.K., Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technoogy. 100, 212–218. https://doi.org/10.1016/j.postharvbio.2014.10.003
  • Nataraj, B.H., Ali, S.A., Behare, P.V. Yadav H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Fact 19, 168 https://doi.org/10.1186/s12934-020-01426-w
  • Ołdak, Aleksandra, Dorota Zielińska, Anna Łepecka, Ewa Długosz, ve Danuta Kołożyn-Krajewska. (2020). Lactobacillus plantarum strains ısolated from polish regional cheeses exhibit anti-staphylococcal activity and selected probiotic properties. Probiotics and Antimicrobial Proteins 12(3):1025–38. https://doi.org/10.1007/s12602-019-09587-w
  • Ötleş, S., Bakar, B., and Türköz, B. K. (2022). Bioinformatic Analysis. In Bioactive Peptides from Food (pp. 321–346). Boca Raton: CRC Press. https://doi.org/10.1201/9781003106524-20
  • Pinilla, C. M. B., Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative food science & emerging technologies, 36, 287-293. https://doi.org/10.1016/j.ifset.2016.07.017
  • Rad, A. H., Aghebati-Maleki, L., Kafil, H. S., Gilani, N., Abbasi, A., Khani, N. (2021). Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety. Biointerface Res Appl Chem, 11, 14529-14544. https://doi.org/10.33263/BRIAC116.1452914544
  • Ruengvisesh, S., Khunrae, P., Rattanarojpong, T., Jongruja, N. (2020). The combined effect of formic acid and Nisin on potato spoilage. Biocatalysis and Agricultural Biotechnology, 24, 101523. https://doi.org/10.1016/j.bcab.2020.101523 Romero-Luna, H. E., Hernández-Mendoza, A., González-Córdova, A. F., and Peredo-Lovillo, A. (2022). Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chemistry: X, 13, 100196. https://doi.org/10.1016/J.FOCHX.2021.100196
  • Rühmkorf, C., Rübsam, H., Becker, T., Bork, C., Voiges, K., Mischnick, P., Brandt M.J., Vogel, R. F. (2012). Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. European Food Research and Technology, 235(1), 139-146. https://doi.org/10.1007/s00217-012-1746-3
  • Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. (2015). Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & function, 6(3), 679-693. https://doi.org/10.1039/C4FO00529E
  • Shehata, M. G., Badr, A. N., El Sohaimy, S. A., Asker, D., Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1), 71-78. https://doi.org/10.1016/j.aoas.2019.05.002
  • Shukla, A., Mehta, K., Parmar, J., Pandya, J., Saraf, M. (2019). Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. European Polymer Journal, 119, 298-310. https://doi.org/10.1016/j.eurpolymj.2019.07.044
  • Skariyachan, S., Govindarajan, S. (2019). Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical preservatives. Internationl journal of food microbiology, 291, 189-196. https://doi.org/10.1016/j.ijfoodmicro.2018.12.002
  • Taşdemir, A. (2017). Probiyotikler, prebiyotikler, sinbiyotikler. Sağlık Akademisi Kastamonu, 2(1), 71-88. https://doi.org/10.25279/sak.300045
  • Tenea, G. N., & Barrigas, A. (2018). The efficacy of bacteriocin-containing cell-free supernatant from Lactobacillus plantarum Cys5-4 to control pathogenic bacteria growth in artisanal beverages. International Food Research Journal, 25(5).
  • Tenea, G. N., Guaña, J. M. (2019). Inhibitory substances produced by native Lactobacillus plantarum UTNCys5-4 control microbial population growth in meat. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/9516981
  • Tenea G. N., Pozo T.D. (2019). Antimicrobial Peptides from Lactobacillus plantarum UTNGt2 Prevent Harmful Bacteria Growth on Fresh Tomatoes. J. Microbiol. Biotechnol. 29:1553-1560. https://doi.org/10.4014/jmb.1904.04063
  • Tenea, G. N., Olmedo, D., Ortega, C. (2020). Peptide-based formulation from lactic acid bacteria Impairs the pathogen growth in Ananas comosus (Pineapple). Coatings, 10(5), 457. https://doi.org/10.3390/coatings10050457
  • Tumbarski, Y., Nikolova, R., Petkova, N., Ivanov, I., & Lante, A. (2019). Biopreservation of Fresh Strawberries by Carboxymethyl Cellulose Edible Coatings Enriched with a Bacteriocin from Bacillus methylotrophicus BM47. Food technology and biotechnology, 57(2), 230–237. https://doi.org/10.17113/ftb.57.02.19.6128
  • Uğur, E., Bektaş, A., Ulusoy, M., Öner, Z. (2021). Paraprobiyotikler, postbiyotikler ve sağlık üzerine etkileri. The Journal of Food, 46(2), 428–442. https://doi.org/10.15237/gida.
  • Venegas-Ortega, M. G., Flores-Gallegos, A. C., Martínez-Hernández, J. L., Aguilar, C. N., and Nevárez-Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455
  • Wang, J., Wu, T., Fang, X., Yang, Z. (2019). Manufacture of low-fat Cheddar cheese by exopolysaccharide-producing Lactobacillus plantarum JLK0142 and its functional properties. Journal of dairy science, 102(5), 3825-3838. https://doi.org/10.3168/jds.2018-15154
  • Yang, Tongxiang, Kongyang Wu, Fang Wang, Xiaolin Liang, Qingsu Liu, Guanlin Li, ve Quanyang Li. (2014). Effect of exopolysaccharides from lactic acid bacteria on the texture and microstructure of buffalo yoghurt. International Dairy Journal 34(2):252–56. https://doi.org/10.1016/j.idairyj.2013.08.007
  • Yordshahi, A. S., Moradi, M., Tajik, H., Molaei, R. (2020). Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. International journal of food microbiology, 321, 108561. https://doi.org/10.1016/j.ijfoodmicro.2020.108561
  • Żółkiewicz, J., Marzec, A., Ruszczyński, M., Feleszko, W. (2020). Postbiotics—a step beyond pre-and probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Seyhan İçier 0000-0002-0627-733X

Cansu Güzelcan 0000-0002-1536-0522

Şule Hıdır 0000-0002-6056-2764

Burcu Kaplan Türköz 0000-0003-3040-3321

Yayımlanma Tarihi 25 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA İçier, S., Güzelcan, C., Hıdır, Ş., Kaplan Türköz, B. (2022). POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI. Gıda, 47(2), 252-265. https://doi.org/10.15237/gida.GD21145
AMA İçier S, Güzelcan C, Hıdır Ş, Kaplan Türköz B. POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI. GIDA. Şubat 2022;47(2):252-265. doi:10.15237/gida.GD21145
Chicago İçier, Seyhan, Cansu Güzelcan, Şule Hıdır, ve Burcu Kaplan Türköz. “POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI”. Gıda 47, sy. 2 (Şubat 2022): 252-65. https://doi.org/10.15237/gida.GD21145.
EndNote İçier S, Güzelcan C, Hıdır Ş, Kaplan Türköz B (01 Şubat 2022) POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI. Gıda 47 2 252–265.
IEEE S. İçier, C. Güzelcan, Ş. Hıdır, ve B. Kaplan Türköz, “POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI”, GIDA, c. 47, sy. 2, ss. 252–265, 2022, doi: 10.15237/gida.GD21145.
ISNAD İçier, Seyhan vd. “POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI”. Gıda 47/2 (Şubat 2022), 252-265. https://doi.org/10.15237/gida.GD21145.
JAMA İçier S, Güzelcan C, Hıdır Ş, Kaplan Türköz B. POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI. GIDA. 2022;47:252–265.
MLA İçier, Seyhan vd. “POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI”. Gıda, c. 47, sy. 2, 2022, ss. 252-65, doi:10.15237/gida.GD21145.
Vancouver İçier S, Güzelcan C, Hıdır Ş, Kaplan Türköz B. POSTBİYOTİKLER VE GIDA ENDÜSTRİSİNDE KULLANIM ALANLARI. GIDA. 2022;47(2):252-65.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/