Derleme
BibTex RIS Kaynak Göster

TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ

Yıl 2023, , 924 - 933, 15.10.2023
https://doi.org/10.15237/gida.GD23023

Öz

Son zamanlarda sağlık ve gıda bilincinin artması ile doğru orantılı olarak fonksiyonel gıdalara olan talep de artmıştır. Fonksiyonel gıda üretiminde tahıllar; obezite, diyabet ve kolon kanseri gibi kronik rahatsızlıkları önlemek amacıyla diyet lif açısından iyi bir alternatif olabilmektedir. Fakat tahıl kepeği gibi diyet lif içeriği yüksek olan bileşenlerden üretilen gıdaların, duyusal kalitesinin genellikle düşük olması bu tür gıdaların talep edilebilirliğini azaltmaktadır. Gıdalarda renk, koku, tat gibi duyusal özellikleri etkilemeyen dirençli nişasta (DN) ise diyet lif özelliğiyle fonksiyonel ürünlerde kullanılabilmektedir. Günümüzde beş farklı dirençli nişasta formu bulunmaktadır. Gıda endüstrisinde dirençli nişasta çeşitlerinden en fazla DN3 ve DN4 kullanılmaktadır. DN5 formu ise son yıllarda araştırılmaktadır. DN5 üretiminin kısa sürmesi, kimyasal ajan gerektirmeden doğal yöntemlerle üretilmesi, ısıl stabilizasyonunun yüksek olması ve proses sırasında uygulanan yüksek ısı-basınç etkilerinden kompleks yapısının korunması gibi üstün teknolojik özellikleri bulunmaktadır. Bu derleme makale çalışmasında DN5 üretim yöntemleri ve DN’nin sağlık üzerindeki etkileri incelenmiştir.

Kaynakça

  • Ai, Y., Zhao, Y., Nelson, B., Birt, D. F., Wang, T. and Jane, J. L. (2013). Characterization and In Vivo Hydrolysis of Amylose-Stearic Acid Complex. Cereal Chem, 91(5): 466-472.
  • Aleixandre, A., Benavent-Gil, Y., Moreira, R. and Rosell, C. M. (2021) In vitro digestibility of gels from different starches: Relationship between kinetic parameters and microstructure, Food Hydrocolloid, 120: 106909.
  • Bede, D., Zaixiang, L. (2021). Recent developments in resistant starch as a functional food. Starch, 73(3-4), 2000139.
  • Bojarczuk, A., Skąpska, S., Khaneghah, A. M., Marszałek, K. (2022). Health benefits of resistant starch: A review of the literature. J Funct Foods, 93: 105094.
  • Chi, C., Li X., Zhang Y., Chen L., Li L., Wang Z. (2017). Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food Func, 8: 720-730.
  • Chi, C., Li, X., Feng, T., Zeng, X., Chen, L., Li, L. (2018). Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study. J Agr Food Chem, 66: 9282-9290.
  • Chumsri, P., Panpipat, W., Cheong, L. Z., Chaijan, M. (2022). Formation of intermediate amylose rice starch–lipid complex assisted by ultrasonication. Food, 11: 2430.
  • Cui, J., Zheng, B., Liu, Y., Chen, L., Li, B., Li, L. (2021). Insights into the effect of structural alternations on the digestibility of rice starch-fatty acid complexes prepared by high-pressure homogenization. Food Sci Technol, 136: 110294.
  • De Martino P., Cockburn D.W. (2020). Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol, 61:66-71.
  • Deng, N., Deng, Z., Tang, C., Liu, C., Luo, S., Chen, T., Hu, X. (2021). Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trend Food Sci Tech, 112: 667-675.
  • Di Marco, A. E., Ixtaina, V. Y., Tomás, M. C. (2022). Analytical and technological aspects of amylose inclusion complexes for potential applications in functional foods. Food Biosci, 47: 101625.
  • Do, M.H., Seo, Y.S., Park, H.Y. (2021). Polysaccharides: bowel health and gut microbiota. Crit Rev Food Sci Nutr, 61: 1-13.
  • Dong, H., Vasanthan, T. (2020). Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloid, 101: 105506.
  • Fan, H., Chen, Z., Xu, L., Wen, Y., Li, H., Wang, J., Sun, B. (2022). Both alkyl chain length and V-amylose structure affect the structural and digestive stability of amylose-alkylresorcinols inclusion complexes. Carbohydr Polym, 292: 119567.
  • Faruk A. M., Dhital S., Li C., Zhang B., Huang Q. (2018). Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. Int J Biol Macr, 07: 1080-1085.
  • Garcia‐Hernandez, A., Roldan‐Cruz, C., Vernon‐Carter, E. J., Alvarez‐Ramirez, J. (2023). Stale bread waste recycling as ingredient for fresh oven‐baked white bread: Effects on dough viscoelasticity, bread molecular organization, texture and starch digestibility. J Sci Food Agr, https://doi.org/10.1002/jsfa.12442
  • Gutierrez A.S.A., Guo J., Feng J., Tan L., Kong L. (2020). Inhibition of starch digestion by gallic acid and alkyl gallates. Food Hydrocolloid, 102:105603.
  • Guo, Z., Zhao, B., Chen, J., Chen, L. and Zheng, B. (2019). Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chem, 297: 124992.
  • Guo, J., Kong, L. (2021). Inhibition of in vitro starch digestion by ascorbyl palmitate and its inclusion complex with starch. Food Hydrocolloid, 121: 107032.
  • Guo, J., Shi, L., Kong, L. (2023). Structure-digestibility relationship of starch inclusion complex with salicylic acid. Carbohydr Polym, 299: 120147.
  • Hasjim, J., Lee, S. O., Hendrich, S., Setiawan, S., Ai, Y. F., Jane, J. L. (2010). Characterization of a novel resistant-starch and its effects on postprandial plasma glucose and insulin responses. Cereal Chem, 87: 257-262.
  • Hasjim, J., Ai, Y., Jane, J.L. (2013). Novel Applications of Amylose-Lipid Complex as Resistant Starch Type 5. Resistant Starch: Sources, Applications and Health Benefits. Eds: Shi, Y.C, Maningat, C.C. John Wiley and Sons, Ltd., West Sussex, UK.
  • Han M., Bao W., Wu Y., Ouyang J. (2020), Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex. Int J Biol Macr, 162: 922-930.
  • Hay, W. T., Behle, R. W., Fanta, G. F., Felker, F. C., Peterson, S. C., Selling, G. W. (2017). Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes. Carbohydr Polym, 157: 1050-1056.
  • Hernandez, H. A. R., Gutiérrez, T. J., Bello-Pérez, L. A. (2022). Can starch-polyphenol V-type complexes be considered as resistant starch?. Food Hydrocolloid, 124: 107226.
  • Jiang, F., Du, C., Jiang, W., Wang, L., Du, S. K. (2020). The preparation, formation, fermentability, and applications of resistant starch. Int J Bio Macr, 150: 1155-1161.
  • Kaimal, A. M., Mujumdar, A. S., Thorat, B. N. (2021). Resistant starch from millets: Recent developments and applications in food industries. Trend Food Sci Tech, 111: 563-580.
  • Kan L., Capuano E., Oliviero T., Renzetti S. (2022). Wheat starch-tannic acid complexes modulate physicochemical and rheological properties of wheat starch and its digestibility. Food Hydrocolloid, 126: 107459.
  • Kang, X., Gao, W., Wang, B., Yu, B., Guo, L., Cui, B., Abd El-Aty, A. M. (2021). Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes. Food Chem, 351: 129303.
  • Li, X., Gao, X., Lu, J., Mao, X., Wang, Y., Feng, D., Gao, W. (2019). Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures. Food Sci Technol, 101: 130-137.
  • Li, M., Ndiaye, C., Corbin, S., Foegeding, E. A., Ferruzzi, M. G. (2020). Starch-phenolic complexes are built on physical CH-π interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods. Food Chem, 308: 125577.
  • Li, Q., Dong, Y., Gao, Y., Du, S. K., Li, W., Yu, X. (2021). Functional properties and structural characteristics of starch–fatty acid complexes prepared at high temperature. J Agr Food Chem, 69: 9076-9085.
  • Lu, X., Shi, C., Zhu, J., Li, Y. and Huang, Q. (2019). Structure of starch-fatty acid complexes produced via hydrothermal treatment. Food Hydrocolloid, 88: 58-67.
  • Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R. and Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem, 338: 128119.
  • Pivetta, F. P., Silva, M. N. D., Tagliapietra, B. L., Richards, N. S. D. S. (2019). Addition of green banana biomass as partial substitute for fat and encapsulated Lactobacillus acidophilus in requeijão cremoso processed cheese. Food Sci Technol, 40: 451-457.
  • Putseys, J. A., Lamberts, L. and Delcour, A. J. (2010). Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J Cereal Sci, 51: 238-247.
  • Qin, R., Wang, J., Chao, C., Yu, J., Copeland, L., Wang, S., Wang, S. (2021). RS5 produced more butyric acid through regulating the microbial community of human gut microbiota. J Agr Food Chem, 69: 3209-3218.
  • Sinhmar, A., Pathera, A. K., Sharma, S., Nehra, M., Thory, R., Nain, V. (2023). Impact of Various Modification Methods on Physicochemical and Functional Properties of Starch: A Review. Starch, 75: 2200117.
  • Sudlapa, P., Suwannaporn, P. (2023). Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch–Phenolic complex and control digestibility. Food Hydrocolloid, 136: 108280.
  • Sun S., Hong Y., Gu Z., Cheng L., Li Z., Li C. (2019). An investigation into the structure and digestibility of starch-oleic acid complexes prepared under various complexing temperatures. Int J Biol Macr, 138: 966-974.
  • Sun, L., Miao, M. (2020). Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit Rev Food Sci Nutr, 60:541-555.
  • Tan, L., Kong, L. (2020). Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion. Crit Rev Food Sci Nutr, 60: 780-790.
  • Tang J., Liang Q., Ren X., Raza H., Ma H. (2022). Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions. Int J Biol Macr, 222: 950-960.
  • Tufvesson F., Wahlgren M., Eliasson A.C. (2003). Formation of amylose-lipid complexes and effects of temperature treatment. Starch, 55: 61–71.
  • Wang, S., Zheng, M., Yu, J., Wang, S., Copeland, L. (2017). Insights into the formation and structures of starch-protein-lipid complexes. J Agr Food Chem, 65(9): 1960-1966.
  • Wang S., Wu T., Cui W., Liu M., Wu Y., Zhao C. (2020). Structure and in vitro digestibility on complex of corn starch with soy isoflavone. Food Sci Nutr, 8: 6061-6068.
  • Xu J., Ma Z., Li, X. Liu L., Hu X. (2020). A more pronounced effect of type III resistant starch vs. type II resistant starch on ameliorating hyperlipidemia in high fat diet-fed mice is associated with its supramolecular structural characteristics. Food Funct, 11: 1982-1995.
  • Zhang B., Huang Q., Luo F.x., Fu X. (2012). Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocolloid, 28: 174–181.
  • Zhao, Y. S., Hasjim, J., Li, L., Jane, J. L., Hendrich, S., Birt, D. F. (2011). Inhibition of Azoxymethane-Induced Preneoplastic Lesions in the Rat Colon by a Cooked Stearic Acid Complexed High-Amylose Cornstarch. J Agr Food Chem, 59: 9700-9708.
  • Zheng Y., Yin X., Kong X., Chen S., Xu E., Liu D. (2021). Introduction of chlorogenic acid during extrusion affects the physicochemical properties and enzymatic hydrolysis of rice flour. Food Hydrocolloid, 116: 106652.

TYPE 5 RESISTANT STARCH: STARCH INCLUSION COMPLEXES

Yıl 2023, , 924 - 933, 15.10.2023
https://doi.org/10.15237/gida.GD23023

Öz

Recently, the demand for functional foods has increased due to growing health and food awareness. In food production, grains serve as good alternatives in terms of dietary fiber, aiding in the prevention of chronic diseases such as obesity, diabetes, and colon cancer. However, the low sensory quality of foods produced from components with high dietary fiber content, such as cereal bran, diminishes the desirability of such foods. Resistant starch (RS), on the other hand, can be utilized in functional products due to its dietary fiber properties without adversely affecting sensory properties such as colour, odour, and taste. Presently, there are five different forms of resistant starch. Among them, RS3 and RS4 are the most commonly used varieties in the food industry. However, the RS5 form has gained attention in recent years. RS5 exhibits superior technological features, including shorter production times, employment of natural methods without the need for chemical agents, high thermal stabilization, and preservation of its complex structure from the high heat-pressure effects applied during the process. This review focuses on discussing RS5 production methods and their health-promoting effects were discussed.

Kaynakça

  • Ai, Y., Zhao, Y., Nelson, B., Birt, D. F., Wang, T. and Jane, J. L. (2013). Characterization and In Vivo Hydrolysis of Amylose-Stearic Acid Complex. Cereal Chem, 91(5): 466-472.
  • Aleixandre, A., Benavent-Gil, Y., Moreira, R. and Rosell, C. M. (2021) In vitro digestibility of gels from different starches: Relationship between kinetic parameters and microstructure, Food Hydrocolloid, 120: 106909.
  • Bede, D., Zaixiang, L. (2021). Recent developments in resistant starch as a functional food. Starch, 73(3-4), 2000139.
  • Bojarczuk, A., Skąpska, S., Khaneghah, A. M., Marszałek, K. (2022). Health benefits of resistant starch: A review of the literature. J Funct Foods, 93: 105094.
  • Chi, C., Li X., Zhang Y., Chen L., Li L., Wang Z. (2017). Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food Func, 8: 720-730.
  • Chi, C., Li, X., Feng, T., Zeng, X., Chen, L., Li, L. (2018). Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study. J Agr Food Chem, 66: 9282-9290.
  • Chumsri, P., Panpipat, W., Cheong, L. Z., Chaijan, M. (2022). Formation of intermediate amylose rice starch–lipid complex assisted by ultrasonication. Food, 11: 2430.
  • Cui, J., Zheng, B., Liu, Y., Chen, L., Li, B., Li, L. (2021). Insights into the effect of structural alternations on the digestibility of rice starch-fatty acid complexes prepared by high-pressure homogenization. Food Sci Technol, 136: 110294.
  • De Martino P., Cockburn D.W. (2020). Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol, 61:66-71.
  • Deng, N., Deng, Z., Tang, C., Liu, C., Luo, S., Chen, T., Hu, X. (2021). Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trend Food Sci Tech, 112: 667-675.
  • Di Marco, A. E., Ixtaina, V. Y., Tomás, M. C. (2022). Analytical and technological aspects of amylose inclusion complexes for potential applications in functional foods. Food Biosci, 47: 101625.
  • Do, M.H., Seo, Y.S., Park, H.Y. (2021). Polysaccharides: bowel health and gut microbiota. Crit Rev Food Sci Nutr, 61: 1-13.
  • Dong, H., Vasanthan, T. (2020). Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloid, 101: 105506.
  • Fan, H., Chen, Z., Xu, L., Wen, Y., Li, H., Wang, J., Sun, B. (2022). Both alkyl chain length and V-amylose structure affect the structural and digestive stability of amylose-alkylresorcinols inclusion complexes. Carbohydr Polym, 292: 119567.
  • Faruk A. M., Dhital S., Li C., Zhang B., Huang Q. (2018). Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. Int J Biol Macr, 07: 1080-1085.
  • Garcia‐Hernandez, A., Roldan‐Cruz, C., Vernon‐Carter, E. J., Alvarez‐Ramirez, J. (2023). Stale bread waste recycling as ingredient for fresh oven‐baked white bread: Effects on dough viscoelasticity, bread molecular organization, texture and starch digestibility. J Sci Food Agr, https://doi.org/10.1002/jsfa.12442
  • Gutierrez A.S.A., Guo J., Feng J., Tan L., Kong L. (2020). Inhibition of starch digestion by gallic acid and alkyl gallates. Food Hydrocolloid, 102:105603.
  • Guo, Z., Zhao, B., Chen, J., Chen, L. and Zheng, B. (2019). Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chem, 297: 124992.
  • Guo, J., Kong, L. (2021). Inhibition of in vitro starch digestion by ascorbyl palmitate and its inclusion complex with starch. Food Hydrocolloid, 121: 107032.
  • Guo, J., Shi, L., Kong, L. (2023). Structure-digestibility relationship of starch inclusion complex with salicylic acid. Carbohydr Polym, 299: 120147.
  • Hasjim, J., Lee, S. O., Hendrich, S., Setiawan, S., Ai, Y. F., Jane, J. L. (2010). Characterization of a novel resistant-starch and its effects on postprandial plasma glucose and insulin responses. Cereal Chem, 87: 257-262.
  • Hasjim, J., Ai, Y., Jane, J.L. (2013). Novel Applications of Amylose-Lipid Complex as Resistant Starch Type 5. Resistant Starch: Sources, Applications and Health Benefits. Eds: Shi, Y.C, Maningat, C.C. John Wiley and Sons, Ltd., West Sussex, UK.
  • Han M., Bao W., Wu Y., Ouyang J. (2020), Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex. Int J Biol Macr, 162: 922-930.
  • Hay, W. T., Behle, R. W., Fanta, G. F., Felker, F. C., Peterson, S. C., Selling, G. W. (2017). Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes. Carbohydr Polym, 157: 1050-1056.
  • Hernandez, H. A. R., Gutiérrez, T. J., Bello-Pérez, L. A. (2022). Can starch-polyphenol V-type complexes be considered as resistant starch?. Food Hydrocolloid, 124: 107226.
  • Jiang, F., Du, C., Jiang, W., Wang, L., Du, S. K. (2020). The preparation, formation, fermentability, and applications of resistant starch. Int J Bio Macr, 150: 1155-1161.
  • Kaimal, A. M., Mujumdar, A. S., Thorat, B. N. (2021). Resistant starch from millets: Recent developments and applications in food industries. Trend Food Sci Tech, 111: 563-580.
  • Kan L., Capuano E., Oliviero T., Renzetti S. (2022). Wheat starch-tannic acid complexes modulate physicochemical and rheological properties of wheat starch and its digestibility. Food Hydrocolloid, 126: 107459.
  • Kang, X., Gao, W., Wang, B., Yu, B., Guo, L., Cui, B., Abd El-Aty, A. M. (2021). Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes. Food Chem, 351: 129303.
  • Li, X., Gao, X., Lu, J., Mao, X., Wang, Y., Feng, D., Gao, W. (2019). Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures. Food Sci Technol, 101: 130-137.
  • Li, M., Ndiaye, C., Corbin, S., Foegeding, E. A., Ferruzzi, M. G. (2020). Starch-phenolic complexes are built on physical CH-π interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods. Food Chem, 308: 125577.
  • Li, Q., Dong, Y., Gao, Y., Du, S. K., Li, W., Yu, X. (2021). Functional properties and structural characteristics of starch–fatty acid complexes prepared at high temperature. J Agr Food Chem, 69: 9076-9085.
  • Lu, X., Shi, C., Zhu, J., Li, Y. and Huang, Q. (2019). Structure of starch-fatty acid complexes produced via hydrothermal treatment. Food Hydrocolloid, 88: 58-67.
  • Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R. and Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem, 338: 128119.
  • Pivetta, F. P., Silva, M. N. D., Tagliapietra, B. L., Richards, N. S. D. S. (2019). Addition of green banana biomass as partial substitute for fat and encapsulated Lactobacillus acidophilus in requeijão cremoso processed cheese. Food Sci Technol, 40: 451-457.
  • Putseys, J. A., Lamberts, L. and Delcour, A. J. (2010). Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J Cereal Sci, 51: 238-247.
  • Qin, R., Wang, J., Chao, C., Yu, J., Copeland, L., Wang, S., Wang, S. (2021). RS5 produced more butyric acid through regulating the microbial community of human gut microbiota. J Agr Food Chem, 69: 3209-3218.
  • Sinhmar, A., Pathera, A. K., Sharma, S., Nehra, M., Thory, R., Nain, V. (2023). Impact of Various Modification Methods on Physicochemical and Functional Properties of Starch: A Review. Starch, 75: 2200117.
  • Sudlapa, P., Suwannaporn, P. (2023). Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch–Phenolic complex and control digestibility. Food Hydrocolloid, 136: 108280.
  • Sun S., Hong Y., Gu Z., Cheng L., Li Z., Li C. (2019). An investigation into the structure and digestibility of starch-oleic acid complexes prepared under various complexing temperatures. Int J Biol Macr, 138: 966-974.
  • Sun, L., Miao, M. (2020). Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit Rev Food Sci Nutr, 60:541-555.
  • Tan, L., Kong, L. (2020). Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion. Crit Rev Food Sci Nutr, 60: 780-790.
  • Tang J., Liang Q., Ren X., Raza H., Ma H. (2022). Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions. Int J Biol Macr, 222: 950-960.
  • Tufvesson F., Wahlgren M., Eliasson A.C. (2003). Formation of amylose-lipid complexes and effects of temperature treatment. Starch, 55: 61–71.
  • Wang, S., Zheng, M., Yu, J., Wang, S., Copeland, L. (2017). Insights into the formation and structures of starch-protein-lipid complexes. J Agr Food Chem, 65(9): 1960-1966.
  • Wang S., Wu T., Cui W., Liu M., Wu Y., Zhao C. (2020). Structure and in vitro digestibility on complex of corn starch with soy isoflavone. Food Sci Nutr, 8: 6061-6068.
  • Xu J., Ma Z., Li, X. Liu L., Hu X. (2020). A more pronounced effect of type III resistant starch vs. type II resistant starch on ameliorating hyperlipidemia in high fat diet-fed mice is associated with its supramolecular structural characteristics. Food Funct, 11: 1982-1995.
  • Zhang B., Huang Q., Luo F.x., Fu X. (2012). Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocolloid, 28: 174–181.
  • Zhao, Y. S., Hasjim, J., Li, L., Jane, J. L., Hendrich, S., Birt, D. F. (2011). Inhibition of Azoxymethane-Induced Preneoplastic Lesions in the Rat Colon by a Cooked Stearic Acid Complexed High-Amylose Cornstarch. J Agr Food Chem, 59: 9700-9708.
  • Zheng Y., Yin X., Kong X., Chen S., Xu E., Liu D. (2021). Introduction of chlorogenic acid during extrusion affects the physicochemical properties and enzymatic hydrolysis of rice flour. Food Hydrocolloid, 116: 106652.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Fatma Nur Akgül Bu kişi benim 0000-0001-5547-0593

Sultan Arslan Tontul 0000-0003-1557-7948

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 15 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akgül, F. N., & Arslan Tontul, S. (2023). TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ. Gıda, 48(5), 924-933. https://doi.org/10.15237/gida.GD23023
AMA Akgül FN, Arslan Tontul S. TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ. GIDA. Ekim 2023;48(5):924-933. doi:10.15237/gida.GD23023
Chicago Akgül, Fatma Nur, ve Sultan Arslan Tontul. “TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ”. Gıda 48, sy. 5 (Ekim 2023): 924-33. https://doi.org/10.15237/gida.GD23023.
EndNote Akgül FN, Arslan Tontul S (01 Ekim 2023) TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ. Gıda 48 5 924–933.
IEEE F. N. Akgül ve S. Arslan Tontul, “TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ”, GIDA, c. 48, sy. 5, ss. 924–933, 2023, doi: 10.15237/gida.GD23023.
ISNAD Akgül, Fatma Nur - Arslan Tontul, Sultan. “TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ”. Gıda 48/5 (Ekim 2023), 924-933. https://doi.org/10.15237/gida.GD23023.
JAMA Akgül FN, Arslan Tontul S. TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ. GIDA. 2023;48:924–933.
MLA Akgül, Fatma Nur ve Sultan Arslan Tontul. “TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ”. Gıda, c. 48, sy. 5, 2023, ss. 924-33, doi:10.15237/gida.GD23023.
Vancouver Akgül FN, Arslan Tontul S. TİP 5 DİRENÇLİ NİŞASTA: NİŞASTA KATILIM KOMPLEKSLERİ. GIDA. 2023;48(5):924-33.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/