Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.)

Yıl 2023, , 1254 - 1263, 15.12.2023
https://doi.org/10.15237/gida.GD23105

Öz

In this study, the effects of hot air drying (HD), vacuum drying (VD) and freeze drying (FD) processes on total phenolic (TPC) and flavonoid contents (TFC), antioxidant capacity (AC), color and antibacterial properties and sensory evaluation of date plum (DP) fruit were determined. Total phenolic, total flavonoid and antioxidant capacity values of dried and fresh samples were determined as 13.86-7.45 mg GAE/g, 7.17-4.09 mg CE/g and 86.60-54.98%, respectively. The highest inhibition levels against Bacillus cereus (24.50 mm) and Salmonella Typhimurium (24.67 mm), Yersinia enterocolitica (25.75 mm) and Staphylococcus aureus (25.17 mm) were determined for HD and VD, respectively. In terms of sensory evaluation, FD drying was scored similarly to fresh samples (P>0.05). Overall, FD drying could be applied for longer preservation of DP fruits in terms of bioactive properties, color and sensory evaluation.

Kaynakça

  • Alp, D., Bulantekin, Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: a review. European Food Research and Technology, 247, 1333-1343. https://doi.org/10.1007/s00217-021-03731-z.
  • Argyropoulos, D., Heindl, A., Müller, J. (2011). Assessment of convection, hot‐air combined with microwave‐vacuum and freeze‐drying methods for mushrooms with regard to product quality. International Journal of Food Science & Technology, 46(2), 333-342. https://doi.org/10.1111/j.1365-2621.2010.02500.x.
  • Ayaz, F. A., Kadıoǧlu, A., Reunanen, M. (1997). Changes in phenolic acid contents of Diospyros lotus L. during fruit development. Journal of Agricultural and Food Chemistry, 45(7), 2539-2541. https://doi.org/10.1021/jf960741c.
  • Başlar, M., Kılıçlı, M., Yalınkılıç, B. (2015). Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrasonics Sonochemistry, 27, 495-502. https://doi.org/10.1016/j.ultsonch.2015.06.018 .
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., Nemati, A. (2019). Comparison of diferent drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. Journal of Food Measurement and Characterization, 14, 862–875. https://doi.org/10.1007/s11694-019-00334-x.
  • Gao, H., Cheng, N., Zhou, J., Wang, B., Deng, J., Cao, W. (2014). Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. Journal of Food Science and Technology, 51, 950-956. https://doi.org/ 10.1007/s13197-011-0591-x.
  • Goktas, H., Dertli, E., Sagdic, O. (2021). Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. LWT-Food Science and Technology, 136, 110340. https://doi.org/10.1016/j.lwt.2020.110340.
  • Goztepe, B., Kayacan, S., Bozkurt, F., Tomas, M., Sagdic, O., Karasu, S. (2022). Drying kinetics, total bioactive compounds, antioxidant activity, phenolic profile, lycopene and β-carotene content and color quality of Rosehip dehydrated by different methods. LWT-Food Science and Technology, 153, 112476. https://doi.org/10.1016/ j.lwt.2021.112476.
  • Guclu, G., Polat, S., Kelebek, H., Capanoglu, E., Selli, S. (2022). Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture, 102(13), 6036-6046. https://doi.org/ 10.1002/jsfa.11956.
  • Hassan, A. M., Zannou, O., Pashazadeh, H., Ali Redha, A., Koca, I. (2022). Drying date plum (Diospyros lotus L.) fruit: Assessing rehydration properties, antioxidant activity, and phenolic compounds. Journal of Food Science, 87(10), 4394-4415. https://doi.org/10.1111/1750-3841.16322.
  • Kayacan, S., Karasu, S., Akman, P. K., Goktas, H., Doymaz, I., Sagdic, O. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT-Food Science and Technology, 118, 108830. https://doi.org/10.1016/j.lwt.2019.108830.
  • Mahjoorian, A., Mokhtarian, M., Fayyaz, N., Rahmati, F., Sayyadi, S., Ariaii, P. (2017). Modeling of drying kiwi slices and its sensory evaluation. Food Science & Nutrition, 5(3), 466-473. https://doi.org/10.1002/fsn3.414.
  • Opara, L. U., Al-Ani, M. R., Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2, 315-321. https://doi.org/10.1007/s11947-008-0095-5.
  • Ozay-Arancioglu, I., Bekiroglu, H., Karadag, A., Saroglu, O., Tekin-Cakmak, Z. H., Karasu, S. (2021). Effect of different drying methods on the bioactive, microstructural, and in-vitro bioaccessibility of bioactive compounds of the pomegranate arils. Food Science and Technology, 42. https://doi.org/10.1590/fst.06221.
  • Petikirige, J., Karim, A., Millar, G. (2022). Effect of drying techniques on quality and sensory properties of tropical fruits. International Journal of Food Science & Technology, 57(11), 6963-6979. https://doi.org/10.1111/ijfs.16043 .
  • Piotrowski, D., Kostyra, E., Grzegory, P., Janiszewska-Turak, E. (2021). Influence of drying methods on the structure, mechanical and sensory properties of strawberries. European Food Research and Technology, 247(8), 1859-1867. https://doi.org/10.1007/s00217-021-03682-5.
  • Singh, R., Chidambara Murthy, K., Jayaprakasha, G. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86. 81-86. https://doi.org/10.1007/s00217-021-03682-5.
  • Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144.
  • Tekin, Z. H., Başlar, M., Karasu, S., Kilicli, M. (2017). Dehydration of green beans using ultrasound‐assisted vacuum drying as a novel technique: Drying kinetics and quality parameters. Journal of Food Processing and Preservation, 41(6), e13227. https://doi.org/10.1111/jfpp.13227.
  • Thamburaj, S., Rajagopal, V., Palanivel, R., Pugazhendhi, S. (2022). Effect of different drying treatments on total polyphenolics content and in-vitro biological properties of Ficus benghalensis fruit: A comparative study. Biocatalysis and Agricultural Biotechnology, 39, 102249. https://doi.org/10.1016/j.bcab.2021.102249.
  • Turkmen, F., Karasu, S., Karadag, A. (2020). Effects of different drying methods and temperature on the drying behavior and quality attributes of cherry laurel fruit. Processes, 8(7), 761. https://doi.org/10.3390/pr8070761.
  • Uddin, G., Rauf, A., Siddiqui, B. S., Muhammad, N., Khan, A., Shah, S. U. A. (2014). Anti-nociceptive, anti-inflammatory and sedative activities of the extracts and chemical constituents of Diospyros lotus L. Phytomedicine, 21(7), 954-959. https://doi.org/10.1016/ j.phymed.2014.03.001.
  • Wojdyło, A., Figiel, A., Legua, P., Lech, K., Carbonell-Barrachina, Á. A., Hernández, F. (2016). Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chemistry, 207, 170-179. https://doi.org/ 10.1016/j.foodchem.2016.03.099.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2.

FARKLI KURUTMA TEKNİKLERİNİN HURMA ERİĞİ MEYVELERİNİN (DIOSPYROS LOTUS L.) BİYOAKTİF, RENK, ANTİBAKTERİYEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ

Yıl 2023, , 1254 - 1263, 15.12.2023
https://doi.org/10.15237/gida.GD23105

Öz

Bu çalışmada sıcak havayla kurutma, vakumla kurutma ve dondurarak kurutma işlemlerinin hurma eriği meyvesinin toplam fenolik ve flavonoid içerikleri, antioksidan kapasitesi, renk ve antibakteriyel özellikler üzerine etkileri ve duyusal değerlendirmesi belirlenmiştir. Kurutulmuş ve taze örneklerin toplam fenolik, toplam flavonoid ve antioksidan kapasitesi değerleri sırasıyla 13.86-7.45 mg GAE/g, 7.17-4.09 mg CE/g ve %86.60-54.98 olarak tespit edilmiştir. Bacillus cereus (24.50 mm) ve Salmonella Typhimurium (24.67 mm) için en yüksek inhibisyon seviyesi sıcak havayla kurutulmuş örneklerden elde edilen ekstraktlarda, Yersinia enterocolitica (25.75 mm) ve Staphaylococcus aureus (25.17 mm) için ise vakum kurutma ile kurutulmuş örneklerden elde edilen ekstraktlarda en yüksek inhibisyon seviyeleri belirlenmiştir. Duyusal değerlendirme açısından dondurarak kurutma taze numunelere benzer şekilde puanlanmıştır (P>0.05). Bu çalışmadan elde edilen bulgular biyoaktif özellikler, renk ve duyusal değerlendirme açısından hurma eriği meyvelerinin daha uzun süre korunması için dondurarak kurutmanın uygulanabileceğini göstermiştir.

Kaynakça

  • Alp, D., Bulantekin, Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: a review. European Food Research and Technology, 247, 1333-1343. https://doi.org/10.1007/s00217-021-03731-z.
  • Argyropoulos, D., Heindl, A., Müller, J. (2011). Assessment of convection, hot‐air combined with microwave‐vacuum and freeze‐drying methods for mushrooms with regard to product quality. International Journal of Food Science & Technology, 46(2), 333-342. https://doi.org/10.1111/j.1365-2621.2010.02500.x.
  • Ayaz, F. A., Kadıoǧlu, A., Reunanen, M. (1997). Changes in phenolic acid contents of Diospyros lotus L. during fruit development. Journal of Agricultural and Food Chemistry, 45(7), 2539-2541. https://doi.org/10.1021/jf960741c.
  • Başlar, M., Kılıçlı, M., Yalınkılıç, B. (2015). Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrasonics Sonochemistry, 27, 495-502. https://doi.org/10.1016/j.ultsonch.2015.06.018 .
  • Farahmandfar, R., Tirgarian, B., Dehghan, B., Nemati, A. (2019). Comparison of diferent drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. Journal of Food Measurement and Characterization, 14, 862–875. https://doi.org/10.1007/s11694-019-00334-x.
  • Gao, H., Cheng, N., Zhou, J., Wang, B., Deng, J., Cao, W. (2014). Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. Journal of Food Science and Technology, 51, 950-956. https://doi.org/ 10.1007/s13197-011-0591-x.
  • Goktas, H., Dertli, E., Sagdic, O. (2021). Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. LWT-Food Science and Technology, 136, 110340. https://doi.org/10.1016/j.lwt.2020.110340.
  • Goztepe, B., Kayacan, S., Bozkurt, F., Tomas, M., Sagdic, O., Karasu, S. (2022). Drying kinetics, total bioactive compounds, antioxidant activity, phenolic profile, lycopene and β-carotene content and color quality of Rosehip dehydrated by different methods. LWT-Food Science and Technology, 153, 112476. https://doi.org/10.1016/ j.lwt.2021.112476.
  • Guclu, G., Polat, S., Kelebek, H., Capanoglu, E., Selli, S. (2022). Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture, 102(13), 6036-6046. https://doi.org/ 10.1002/jsfa.11956.
  • Hassan, A. M., Zannou, O., Pashazadeh, H., Ali Redha, A., Koca, I. (2022). Drying date plum (Diospyros lotus L.) fruit: Assessing rehydration properties, antioxidant activity, and phenolic compounds. Journal of Food Science, 87(10), 4394-4415. https://doi.org/10.1111/1750-3841.16322.
  • Kayacan, S., Karasu, S., Akman, P. K., Goktas, H., Doymaz, I., Sagdic, O. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT-Food Science and Technology, 118, 108830. https://doi.org/10.1016/j.lwt.2019.108830.
  • Mahjoorian, A., Mokhtarian, M., Fayyaz, N., Rahmati, F., Sayyadi, S., Ariaii, P. (2017). Modeling of drying kiwi slices and its sensory evaluation. Food Science & Nutrition, 5(3), 466-473. https://doi.org/10.1002/fsn3.414.
  • Opara, L. U., Al-Ani, M. R., Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2, 315-321. https://doi.org/10.1007/s11947-008-0095-5.
  • Ozay-Arancioglu, I., Bekiroglu, H., Karadag, A., Saroglu, O., Tekin-Cakmak, Z. H., Karasu, S. (2021). Effect of different drying methods on the bioactive, microstructural, and in-vitro bioaccessibility of bioactive compounds of the pomegranate arils. Food Science and Technology, 42. https://doi.org/10.1590/fst.06221.
  • Petikirige, J., Karim, A., Millar, G. (2022). Effect of drying techniques on quality and sensory properties of tropical fruits. International Journal of Food Science & Technology, 57(11), 6963-6979. https://doi.org/10.1111/ijfs.16043 .
  • Piotrowski, D., Kostyra, E., Grzegory, P., Janiszewska-Turak, E. (2021). Influence of drying methods on the structure, mechanical and sensory properties of strawberries. European Food Research and Technology, 247(8), 1859-1867. https://doi.org/10.1007/s00217-021-03682-5.
  • Singh, R., Chidambara Murthy, K., Jayaprakasha, G. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86. 81-86. https://doi.org/10.1007/s00217-021-03682-5.
  • Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144.
  • Tekin, Z. H., Başlar, M., Karasu, S., Kilicli, M. (2017). Dehydration of green beans using ultrasound‐assisted vacuum drying as a novel technique: Drying kinetics and quality parameters. Journal of Food Processing and Preservation, 41(6), e13227. https://doi.org/10.1111/jfpp.13227.
  • Thamburaj, S., Rajagopal, V., Palanivel, R., Pugazhendhi, S. (2022). Effect of different drying treatments on total polyphenolics content and in-vitro biological properties of Ficus benghalensis fruit: A comparative study. Biocatalysis and Agricultural Biotechnology, 39, 102249. https://doi.org/10.1016/j.bcab.2021.102249.
  • Turkmen, F., Karasu, S., Karadag, A. (2020). Effects of different drying methods and temperature on the drying behavior and quality attributes of cherry laurel fruit. Processes, 8(7), 761. https://doi.org/10.3390/pr8070761.
  • Uddin, G., Rauf, A., Siddiqui, B. S., Muhammad, N., Khan, A., Shah, S. U. A. (2014). Anti-nociceptive, anti-inflammatory and sedative activities of the extracts and chemical constituents of Diospyros lotus L. Phytomedicine, 21(7), 954-959. https://doi.org/10.1016/ j.phymed.2014.03.001.
  • Wojdyło, A., Figiel, A., Legua, P., Lech, K., Carbonell-Barrachina, Á. A., Hernández, F. (2016). Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chemistry, 207, 170-179. https://doi.org/ 10.1016/j.foodchem.2016.03.099.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kurutma Teknolojileri
Bölüm Makaleler
Yazarlar

Hamza Goktas 0000-0001-9802-9378

Erken Görünüm Tarihi 15 Kasım 2023
Yayımlanma Tarihi 15 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Goktas, H. (2023). EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.). Gıda, 48(6), 1254-1263. https://doi.org/10.15237/gida.GD23105
AMA Goktas H. EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.). GIDA. Aralık 2023;48(6):1254-1263. doi:10.15237/gida.GD23105
Chicago Goktas, Hamza. “EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.)”. Gıda 48, sy. 6 (Aralık 2023): 1254-63. https://doi.org/10.15237/gida.GD23105.
EndNote Goktas H (01 Aralık 2023) EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.). Gıda 48 6 1254–1263.
IEEE H. Goktas, “EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.)”, GIDA, c. 48, sy. 6, ss. 1254–1263, 2023, doi: 10.15237/gida.GD23105.
ISNAD Goktas, Hamza. “EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.)”. Gıda 48/6 (Aralık 2023), 1254-1263. https://doi.org/10.15237/gida.GD23105.
JAMA Goktas H. EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.). GIDA. 2023;48:1254–1263.
MLA Goktas, Hamza. “EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.)”. Gıda, c. 48, sy. 6, 2023, ss. 1254-63, doi:10.15237/gida.GD23105.
Vancouver Goktas H. EFFECT OF DIFFERENT DRYING TECHNIQUES ON THE BIOACTIVE, COLOR, ANTIBACTERIAL AND SENSORY FEATURES OF DATE PLUM FRUITS (DIOSPYROS LOTUS L.). GIDA. 2023;48(6):1254-63.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/