ÜÇ BOYUTLU (3D) BASKI TEKNİĞİYLE ELMA VE HAVUÇ SUYU BAZLI ÜRÜNLERİN ÜRETİMİ VE KARAKTERİZASYONU
Yıl 2024,
, 714 - 729, 14.08.2024
Selçuk Ok
,
Emin Yılmaz
Öz
Bu çalışmada, 3D gıda yazıcısıyla elma ve havuç suyu bazlı sağlıklı, seçilen meyve ve sebzenin kendine has duyusal özelliklerini taşıyan atıştırmalıkların üretilmesi hedeflenmiştir. Bu atıştırmalıkların, meyve ve sebzeleri doğal formlarında tüketmeyi sevmeyen ve/veya tekstürlerinden dolayı tüketemeyen insanlar (yaşlılar, yutkunma zorluğu çekenler) için bir alternatif olacağı düşünülmüştür. Elma ve havuç suyunun jelleşmesi için gereken minimum nişasta konsantrasyonu %5 olarak belirlenmiştir. Parçalanmış jellerin reolojik özellikleri belirlenmiş ve bu parçalanmış jeller 3D yazıcıda işlenmiştir. %97 oranında basılabilirlik ve %98 oranında stabilite değerlerine sahip elma ve havuç suyu bazlı 3D ürünler elde edilmiştir. Duyusal analiz sonuçlarına göre her iki örneğin genel kabul skorları orta değerin altında kalmıştır. Ayrıca, ürünlerin fizikokimyasal ve termal özellikleri belirlenmiş, baskı hızı ve doluluk oranının baskı kalitesi üzerine etkileri incelenmiştir.
Destekleyen Kurum
Çanakkale Onsekiz Mart Üniversitesi
Proje Numarası
FBA-2022-3971
Teşekkür
Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri (FBA-2022-3971) tarafından desteklenmiştir. Sağlanan destek için teşekkürlerimizi sunarız.
Kaynakça
- Azam, R.S.M., Zhang, M., Bhandari, B., Yang, C. (2018). Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophysics, 13: 250-262, doi: 10.1007/s11483-018-9531-x.
- Barnes, H.A. (2000). A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics., UK, 200 p.
- Bchir, B., Besbes, S., Karoui, R., Paquot, M., Attia, H., Blecker, C. (2012). Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solution base. Food and Bioprocess Technology, 5: 999-1009, doi: 10.1007/s11947-010-0442-1.
- Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220: 65-75, doi: 10.1016/ j.jfoodeng.2017.05.015.
- Derossi, A., Paolilo, M., Caporizzi, R., Severini, C. (2020). Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 275: Article 109865, doi: 10.1016/j.jfoodeng.2019.109865.
- Farahnaky, A., Alishahi, A., Majzoobi, M., Al-Hakkak, J. (2014). Effect of mixing speed and time on some textural and physicochemical properties of wheat starch gels. Journal of Food Engineering, 142: 138-145, doi: 10.1016/ j.jfoodeng.2014.06.009.
- Godoi, F.C., Prakash, S., Bhandari, B.R. (2016). 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179: 44-54, doi: 10.1016/j.jfoodeng.2016.01.025.
- Goksel, M., Dogan, M., Toker, O.S., Ozgen, S., Sarioglu, K., Oral, R.A. (2013). The effect of starch concentration and temperature on grape molasses: rheological and textural properties. Food and Bioprocess Technology, 6: 259–271, doi: 10.1007/s11947-011-0705-5.
- Ishii, T., Matsumiya, K., Aoshima, M., Matsumura, Y. (2018). Microgelation imparts emulsifying ability to surface-inactive polysaccharides-bottom-up vs top-down approaches. npj Science of Food, 2: Article 15, doi:10.1038/s41538-018-0023-7.
- Kouzani, A.Z., Adams, S., Whyte, D.J., Oliver, R., Hemsley, B., Palmer, S., Balandin, S. (2017). 3D printing of food for people with swallowing difficulties. DesTech Conference Proceedings, The International Conference on Design and Technology, February 2017, Australia. doi: 10.18502/keg.v2i2.591.
- Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Noren, N., Lipson, H. (2010). Multimaterial food printing with complex internal structure suitable for conventional post-processing. 21st Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, January 2010, USA.
- Liu, L., Meng, Y., Bhandari, B., Dai, X., Chen, K., Zhu, Y., Prakash, S. (2019). 3D printing complex egg white protein objects: Properties and optimization. Food and Bioprocess Technology, 12: 267–279, doi: 10.1007/s11947-018-2209-z.
- Meilgaard, M., Civille, G.V., Carr, B.T. (1991). Sensory evaluation techniques. CRC Press, USA, 416 p.
Minitab (2023). Minitab Statistical Software. Minitab, Inc., USA.
- Ok, S., Yilmaz, E., Demirel Zorba, N.N. (2024). Preparation and characterization of 3D printed objects based on different kefir gels. Food Biophysics, doi: 10.1007/s11483-024-09839-5.
- Rosalina, I., Bhattacharya, M. (2002). Dynamic rheological measurements and analysis of starch gels. Carbohydrate Polymers, 48: 191-202, doi: 10.1016/S0144-8617(01)00235-1.
- Severini, C., Azzollini, D., Albenzio, M., Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106: 666-676, doi: 10.1016/ j.foodres.2018.01.034.
- Sommer, M.R., Alison, L., Minas, C., Tervoort, E., Rühs, P.A., Studart, A.R. (2017). 3D printing of concentrated emulsions into multiphase biocompatible soft materials. Soft Matter, 13: 1794-1803, doi: 10.1039/C6SM02682F.
- Song, K., Compaan, A.M., Chai, W., Huang, Y. (2020). Injectable gelatin microgel-based composite ink for 3D bioprinting in air. ACS Applied Materials & Interfaces, 12: 22453-22466, doi: 10.1021/acsami.0c01497.
- Yang, F., Zhang, M., Bhandari, B., Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT – Food Science and Technology, 87: 67-76, doi: 10.1016/j.lwt.2017.08.054.
- Yılmaz, E., Arsunar, E.S., Aydeniz, B., Güneşer, O. (2015). Cold pressed capia pepperseed (capsicum annuum l.) oils: composition, aroma and sensory properties. European Journal of Lipid Science and Technology, 117: 1016–1026, doi: 10.1002/ejlt.201400276.
- Yilmaz, E., Keskin Uslu, E., Öz, C. (2021). Oleogels of some plant waxes: characterization and comparison with sunflower wax oleogel. Journal of the American Oil Chemists' Society, 98: 643-655, doi: 10.1002/aocs.12490.
PRODUCTION OF APPLE AND CARROT JUICE BASED PRODUCTS USING THREE-DIMENSIONAL (3D) PRINTING TECHNIQUE AND THEIR CHARACTERIZATION
Yıl 2024,
, 714 - 729, 14.08.2024
Selçuk Ok
,
Emin Yılmaz
Öz
This study aimed to produce apple and carrot juice-based healthy snacks with unique sensory properties of selected fruit and vegetable with a 3D food printer. It was thought that these snacks will be an alternative for those who do not like to consume fruits and vegetables in their natural form and/or for people who cannot consume fruits and vegetables due to their texture (elders, people with swallowing difficulty). Minimum starch concentration required for gelation of apple and carrot juice was determined as 5%. Rheological properties of disintegrated gels were determined and these disintegrated gels were processed in 3D printer. Apple and carrot juice-based 3D products with 97% printability and 98% stability were obtained. According to sensory analysis results, general acceptance scores remained below medium value. Moreover, physicochemical and thermal properties of the products were determined, and effects of printing speed and filling rate on printing quality were examined.
Proje Numarası
FBA-2022-3971
Kaynakça
- Azam, R.S.M., Zhang, M., Bhandari, B., Yang, C. (2018). Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophysics, 13: 250-262, doi: 10.1007/s11483-018-9531-x.
- Barnes, H.A. (2000). A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics., UK, 200 p.
- Bchir, B., Besbes, S., Karoui, R., Paquot, M., Attia, H., Blecker, C. (2012). Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solution base. Food and Bioprocess Technology, 5: 999-1009, doi: 10.1007/s11947-010-0442-1.
- Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220: 65-75, doi: 10.1016/ j.jfoodeng.2017.05.015.
- Derossi, A., Paolilo, M., Caporizzi, R., Severini, C. (2020). Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 275: Article 109865, doi: 10.1016/j.jfoodeng.2019.109865.
- Farahnaky, A., Alishahi, A., Majzoobi, M., Al-Hakkak, J. (2014). Effect of mixing speed and time on some textural and physicochemical properties of wheat starch gels. Journal of Food Engineering, 142: 138-145, doi: 10.1016/ j.jfoodeng.2014.06.009.
- Godoi, F.C., Prakash, S., Bhandari, B.R. (2016). 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179: 44-54, doi: 10.1016/j.jfoodeng.2016.01.025.
- Goksel, M., Dogan, M., Toker, O.S., Ozgen, S., Sarioglu, K., Oral, R.A. (2013). The effect of starch concentration and temperature on grape molasses: rheological and textural properties. Food and Bioprocess Technology, 6: 259–271, doi: 10.1007/s11947-011-0705-5.
- Ishii, T., Matsumiya, K., Aoshima, M., Matsumura, Y. (2018). Microgelation imparts emulsifying ability to surface-inactive polysaccharides-bottom-up vs top-down approaches. npj Science of Food, 2: Article 15, doi:10.1038/s41538-018-0023-7.
- Kouzani, A.Z., Adams, S., Whyte, D.J., Oliver, R., Hemsley, B., Palmer, S., Balandin, S. (2017). 3D printing of food for people with swallowing difficulties. DesTech Conference Proceedings, The International Conference on Design and Technology, February 2017, Australia. doi: 10.18502/keg.v2i2.591.
- Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Noren, N., Lipson, H. (2010). Multimaterial food printing with complex internal structure suitable for conventional post-processing. 21st Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, January 2010, USA.
- Liu, L., Meng, Y., Bhandari, B., Dai, X., Chen, K., Zhu, Y., Prakash, S. (2019). 3D printing complex egg white protein objects: Properties and optimization. Food and Bioprocess Technology, 12: 267–279, doi: 10.1007/s11947-018-2209-z.
- Meilgaard, M., Civille, G.V., Carr, B.T. (1991). Sensory evaluation techniques. CRC Press, USA, 416 p.
Minitab (2023). Minitab Statistical Software. Minitab, Inc., USA.
- Ok, S., Yilmaz, E., Demirel Zorba, N.N. (2024). Preparation and characterization of 3D printed objects based on different kefir gels. Food Biophysics, doi: 10.1007/s11483-024-09839-5.
- Rosalina, I., Bhattacharya, M. (2002). Dynamic rheological measurements and analysis of starch gels. Carbohydrate Polymers, 48: 191-202, doi: 10.1016/S0144-8617(01)00235-1.
- Severini, C., Azzollini, D., Albenzio, M., Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106: 666-676, doi: 10.1016/ j.foodres.2018.01.034.
- Sommer, M.R., Alison, L., Minas, C., Tervoort, E., Rühs, P.A., Studart, A.R. (2017). 3D printing of concentrated emulsions into multiphase biocompatible soft materials. Soft Matter, 13: 1794-1803, doi: 10.1039/C6SM02682F.
- Song, K., Compaan, A.M., Chai, W., Huang, Y. (2020). Injectable gelatin microgel-based composite ink for 3D bioprinting in air. ACS Applied Materials & Interfaces, 12: 22453-22466, doi: 10.1021/acsami.0c01497.
- Yang, F., Zhang, M., Bhandari, B., Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT – Food Science and Technology, 87: 67-76, doi: 10.1016/j.lwt.2017.08.054.
- Yılmaz, E., Arsunar, E.S., Aydeniz, B., Güneşer, O. (2015). Cold pressed capia pepperseed (capsicum annuum l.) oils: composition, aroma and sensory properties. European Journal of Lipid Science and Technology, 117: 1016–1026, doi: 10.1002/ejlt.201400276.
- Yilmaz, E., Keskin Uslu, E., Öz, C. (2021). Oleogels of some plant waxes: characterization and comparison with sunflower wax oleogel. Journal of the American Oil Chemists' Society, 98: 643-655, doi: 10.1002/aocs.12490.