Derleme
BibTex RIS Kaynak Göster

MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER

Yıl 2025, Cilt: 50 Sayı: 4, 629 - 643, 10.08.2025
https://doi.org/10.15237/gida.GD25052

Öz

Mikotoksinler, halk sağlığı üzerinde oluşturdukları tehdit ve ekonomilere olan olumsuz etkileri nedeniyle dünya çapında önemli bir sorun olarak kabul edilmektedir. Bu nedenle, gıdalarda mikotoksinlerin önlenmesi, kısmen azaltılması veya tamamen ortadan kaldırılmasına yönelik çalışmalar önem taşımaktadır. Gıdalardaki mikotoksinleri engellemek için uygulanan ısıl işlem, fermantasyon ve ışınlama gibi bazı endüstriyel ve evsel işlemler incelendiğinde, bu işlemlerin mikotoksinlerin tamamen uzaklaştırılmasında yetersiz kaldığı gözlemlenmiştir. Bu sebeple son yıllarda mikotoksinlerin kontrol altına alınabilmesi amacıyla tamamlayıcı stratejiler ve yenilikçi yöntemlerin geliştirilmesine odaklanılmıştır. Mikotoksin detoksifikasyonu için fiziksel (ışınlama, soğuk plazma, yüksek basınç, darbeli elektrik alanları), kimyasal (amonyak, kitosan, ozon) ve biyolojik (laktik asit bakterileri, probiyotikler) birçok yöntem kullanılmaktadır. Fiziksel ve kimyasal yöntemlerle karşılaştırıldığında, biyolojik yöntemlerle detoksifikasyon süreçleri, gıda ürünlerinin besin değerlerinde daha az kayba neden oldukları için en umut verici yaklaşım olarak değerlendirilmektedir.

Kaynakça

  • Abraham, N., Schroeter, K. L., Zhu, Y., Chan, J., Evans, N., Kimber, M. S., Seah, S. Y. (2022). Structure–function characterization of an aldo–keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Scientific Reports, 12(1), 14737. https://doi.org/10.1038/ s41598-022-19040-8
  • Adeyeye, S.A.O. (2016). Fungal mycotoxins in foods: a review. Cogent Food & Agriculture, 2: 1213127. http://dx.doi.org/10.1080/ 23311932.2016.1213127
  • Afsah-Hejri, L., Hajeb, P., Ehsani, R.J. (2020). Application of ozone for degradation ofmycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety 1-32. http://dx.doi.org/10.1111/1541-4337.12594
  • Akbulut, İ. (2023). Sultaniye cinsi kuru üzümde bulunan Okratoksin (OTA) detoksifikasyonunda soğuk plazma teknolojisinin kullanımı ve kalite özelliklerinin incelenmesi. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İzmir Türkiye, 150 s.
  • Alizadeh, A. M., Hashempour-Baltork, F., Khaneghah, A. M., Hosseini, H. (2021). New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Current Opinion in Food Science, 39, 7-15. http://dx.doi.org/10.1016/j.cofs.2020.12.006
  • Alnaemi, H. S., Dawood, T. N., Algwari, Q. T. (2025). Ultraviolet C and Ozone Application for Detoxification of Aflatoxin B1, Ochratoxin A, and Fumonisin B1 in Poultry Feeds. Egyptian Journal of Veterinary Sciences, 56(4), 797-813. https://doi.org/10.21608/ejvs.2024.277904.1937
  • Aloui, A., Salah-Abbès J.B., Zinedine, A., Riba,A., Durand, N., Meile, J.C.,Montet, D., Catherine Brabet, C., Abbès, S. (2023). Prevention and detoxification of mycotoxins in human food and animal feed using bio-resources from south mediterranean countries: a critical review. Critical Reviews in Toxicology, 53(2), 117-130. https://doi.org/10.1080/10408444.2023.2211178
  • Avsaroglu, M. D., Bozoglu, F., Alpas, H., Largeteau, A., & Demazeau, G. (2015). Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Pressure Research, 35(2), 214-222. https://doi.org/ 10.1080/08957959.2015.1027700
  • Awuchi, C.G., Nyakundi Ondari, E., Ogbonna, C.U., Upadhyay, A.K., Baran, K., Okpala, C.O.R., Korzeniowska, M., Raquel P. F. Guiné, R.P.F. (2021). Mycotoxins affecting animals, foods, humans, and plants: types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies a revisit. Foods, 10, 1279. https://doi.org/10.3390/foods10061279
  • Babaee, R., Karami-Osboo, R., Mirabolfathy, M. (2021). An overview of effective detoxification methods for aflatoxin-contaminated pistachio. Pistachio and Health Journal, 4(2), 75-93. https://10.22123/PHJ.2021.283744.1096
  • Bahari, HR., Khaneghah, AM., Ismail Eş, I. (2024). Upconversion nanoparticles-modified aptasensors for highly sensitivemycotoxin detection for food quality and safety. Comprehensive Reviews in Food Science and Food Safety, 23(3). https://doi.org/10.1111/1541-4337.13369
  • Balwan, W.K., Neelam Saba, N., Kour, S. (2023). Study of impact of mycotoxins on the human health. Scholars Bulletin, 9(2), 19-23. https://doi.org/10.36348/sb.2023.v09i02.003
  • Benzer Gürel, D. (2023). Atmosferik soğuk plazmanın yüksek ihracat kapasitesine sahip kuru incir ve kuru üzümdeki aflatoksinler ve okratoksin a üzerine etkisi. Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Manisa, Türkiye, 127s.
  • Calado, T., Fernández-Cruz, M.L., Verde, S.C., Venâncio, A., Abrunhosa, L. (2018). Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 240, 463–471. http://dx.doi.org/ 10.1016/j.foodchem.2017.07.136
  • Conte, G., Fontanelli, M., Galli, F., Cotrozzi, L., Pagni, L., Pellegrini, E. (2020). Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins, 12(8), 486. https://doi.org/ 10.3390/toxins12080486
  • Çetin, Z. (2024). Sirkede penicillium expansum küfünün inaktivasyonu ve patulin degradasyonunda leuconostoc mesenteroides etkinliğinin incelenmesi. İstanbul Aydın Üniversitesi Yüksek Lisans Tezi Lisansüstü Eğitim Enstitüsü, İstanbul
  • Daou, R., Joubrane, K., Maround, R., Khabbaz, L.R., Ali Ismail , A., André El Khoury, A.E. (2021). Mycotoxins: Factors influencing production and control strategies. Agriculture and Food, 6(1), 416–447. https://doi.org/ 10.3934/agrfood.2021025
  • Ding, L., Han, M., Wang, X., Yifei Guo, Y. (2023). Ochratoxin A: overview of prevention, removal, and detoxification methods. Toxins, 15, 565. https://doi.org/10.3390/toxins15090565
  • Elkenany, R.M., Awad, A. (2020). Types of Mycotoxins and different approaches used for their detection in foodstuffs. Mansoura Veterinary Medical Journal, 21(4), 25-32. https://doi.org/ 10.35943/mvmj.2021.161191
  • El-Sayed, R.A., Jebur, A.B., Kang, W., El-Demerdash, F.M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91- 102. https://doi.org/ 10.1016/j.jfutfo.2022.03.002 2772-5669
  • Guo, Y., Lihong Zhao, L., Ma, Q., Ji, C. (2021). Novel strategies for degradation of aflatoxins in food and feed: A review. Food Research International, 14,109878. https://doi.org/10.1016/ j.foodres.2020.109878
  • Gonçalves, B. L., Muaz, K., Coppa, C. F. S. C., Rosim, R. E., Kamimura, E. S., Oliveira, C. A. F., Corassin, C. H. (2020). Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Research International, 136, 109604. https://doi.org/10.1016/j.foodres.2020.109604
  • Janik, E., , Niemcewicz, M., Ceremuga, M., Stela, M., Bijak, J.S., Siadkowski, A., Bijak, M. (2020). Molecular aspects of mycotoxins—a serious problem for human health. International Journal of Molecular Sciences, 21, 8187. https://doi.org/ 10.3390/ijms21218187
  • Hashemi, S. M. B., & Amiri, M. J. (2020). A comparative adsorption study of aflatoxin B1 and aflatoxin G1 in almond butter fermented by Lactobacillus fermentum and Lactobacillus delbrueckii subsp. lactis. Lwt-Food Science and Technology, 128, 109500.https://doi.org/10.1016/j.lwt.2020.109500
  • Hassanpour, M., Rezaie, M. R., & Baghizadeh, A. (2019). Practical analysis of aflatoxin M1 reduction in pasteurized Milk using low dose gamma irradiation. Journal of Environmental Health Science and Engineering, 17, 863-872. https://doi.org/10.1007/s40201-019-00403-9
  • Karlovsky, P., Suman, M., Berthiller, F., Meester, J., Eisenbrand, G., Perrin, I., Oswald, I.P., Speijers, G., Chiodini, A., Recker, T., Dussort, P. (2016). Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 32,179– https://doi.org/205.10.1007/s12550-016-0257-7
  • Khan, R., Anwar, F., Ghazali F.M. (2024). A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon, 10(8), e28361. https://doi.org/10.1016/j.heliyon.2024.e28361
  • Kurup, A. H., Patras, A., Pendyala, B., Vergne, M. J., & Bansode, R. R. (2022). Evaluation of Ultraviolet-Light (UV-A) Emitting Diodes Technology on the Reduction of Spiked Aflatoxin B 1 and Aflatoxin M 1 in Whole Milk. Food and Bioprocess Technology, 1-12. https://doi.org/10.1007/s11947-021-02731-x
  • Lach, M., Kotarska, K. (2024). Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules, 29(19), 4563. https://doi.org/10.3390/molecules29194563
  • Luo, Y., Zhou, Z., Yue, T. (2017). Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chemistry, 221, 317-323. https://doi.org/10.1016/ j.foodchem.2016.09.008
  • Mafe, A. N., Büsselberg, D. (2024). Mycotoxins in food: cancer risks and strategies for control. Foods, 13: 3502. https://doi.org/10.3390/foods13213502
  • Mir, S.A., Dar, B.N., Shah, M.A. Sofi,S.A., Hamdani, A.M. Oliveira , C.A.F., Moosavi,M.H., Khaneghah, A.M., Sant’AnA, A.S. (2021). Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148, 111976. https://doi.org/ 10.1016/j.fct.2021.111976
  • Mohammadi, H., Mazloomi, S. M., Eskandari, M. H., Aminlari, M., Niakousari, M. (2017). The effect of ozone on aflatoxin M1, oxidative stability, carotenoid content and the microbial count of milk. Ozone: Science & Engineering, 39(6), 447-453. https://doi.org/10.1080/ 01919512.2017.1329647
  • Morshedi, A., Shakerardekani, A., Reza Karazhian, R., Mohammad Morshedi, M., Valdes, M.E., Mohammadi-Moghaddam, T., Kariminejad, M. (2023). Mycotoxins’ contamination in food and feeds: a review. Journal of Food Chemistry & Nanotechnology, 9(3), 141-149. https://doi.org/10.17756/jfcn.2023-160
  • Muaz, K., Riaz, M., Oliveira, C. A. F. D., Akhtar, S., Ali, S. W., Nadeem, H., Park, S., B. (2022). Aflatoxin M1 in milk and dairy products: Global occurrence and potential decontamination strategies. Toxin Reviews, 41(2), 588-605. https://doi.org/10.1080/15569543.2021.1873387
  • Muhialdin, B.J., Saari, N., Meor Hussin, A.S. (2020). Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules, 25, 2655. https://doi.org/10.3390/ molecules25112655
  • Nagda, A., Meena, M. (2024). Alternaria mycotoxins in food and feed: Occurrence, biosynthesis, toxicity, analytical methods, control and detoxification strategies. Food Control, 158, 110211. https://doi.org/10.1016/ j.foodcont.2023.110211
  • Nesic, K., Habschied, K., Mastanjevic, K. (2021). Possibilities for the biological control of mycotoxins in food and feed. Toxins, 13, 198. https://doi.org/10.3390/toxins13030198
  • Niedźwiedź, I., Waśko, A., Pawłat, J., Polak-Berecka, M. (2019). The state of research on antimicrobial activity of cold plasma. Polish Journal of Microbiology, 68(2), 153-164. https://doi.org/ 10.33073/pjm-2019-028.
  • Nguyen, T., Palmer, J., Loo, T., Shilton, A., Petcu, M., Newson, H. L., Flint, S. (2022). Investigation of UV light treatment (254 nm) on the reduction of aflatoxin M1 in skim milk and degradation products after treatment. Food Chemistry, 390, 133165. https://doi.org/10.1016/ j.foodchem.2022.133165
  • Omak, G., Özcan, T., Ersan, L. Y. (2016). Biyolojik detoksifikasyon ve probiyotikler. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(1), 157-168.
  • Pallarés, N., Barba, F. J., Berrada, H., Tolosa, J., Ferrer, E. (2020). Pulsed electric fields (PEF) to mitigate emerging mycotoxins in juices and smoothies. Applied Sciences, 10(19), 6989. https://doi.org/10.3390/app10196989
  • Peng, Z., Zhang, Y., Ai. Z., Ravi Pandiselvam, R., Jiale Guo, J., Anjineyulu Kothakota, A., Yanhong Liu, Y. (2023). Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Comprehensive Reviews in Food Science and Food Safety, 22, 4030–4052. https://doi.org/ 10.1111/1541-4337.13197
  • Petrovic, E., Cosic, J., Vrandecic, K., Godena, K.S. (2023). Occurrence of mycotoxins in food and beverages. Journal of Central European Agriculture, 24(1), 137-150. https://doi.org/ 10.5513/JCEA01/24.1.3704 Piotrowska, M. (2021). Microbiological decontamination of mycotoxins: opportunities and limitations. Toxins, 13, 819. https://doi.org/10.3390/toxins13110819
  • Pleadin, J., Jadranka Frece, J., Ksenija Markov, K. (2019). Mycotoxins in food and feed. Advances in Food and Nutrition Research, 89, 297-345. https://doi.org/10.1016/bs.afnr.2019.02.007
  • Rao, W., Li, Y., Dhaliwal, H., Feng, M., Xiang, Q., Roopesh, M. S., Du, L. (2023). The application of cold plasma technology in low-moisture foods. Food Engineering Reviews, 15(1), 86-112. https://doi.org/10.1007/s12393-022-09329-9
  • Rodríguez-Bencomo, J. J., Sanchis, V., Viñas, I., Martín-Belloso, O., Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry, 315, 126283. https://doi.org/10.1016/ j.foodchem.2020.126283
  • Ryu D., Bianchini, A., Bullerman, L.B. (2008). Effects of processing on mycotoxins. Stewart Postharvest Review, 6, 5. https://doi.org/ 10.2212/spr.2008.6.5
  • Saghir, S. A., Bancroft, J. (2024). Molds and mycotoxins indoors I: Current issues and way forward. Archives of Clinical Toxicology, 7(1), 1-7. https://doi.org/10.46439/toxicology.7.032
  • Schrenk, D., Bignami, M., Bodin, L., Chipman, J.K., Mazo, J., Grasl-Kraupp, B., Hoogenboom, L., Leblanc, J.C., Nebbia, C.S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Schwerdtle, T., Vleminckx, C., Wallace, H., Rose, M., Cottrill, B., Lundebye, A.K., Metzler, M., Ben Whitty, B., Alberto Navarro-Villa, A. (2024). Guidance for the assessment of detoxification processes in feed. EFSA Journal, 22, e8528. https://doi.org/10.2903/j.efsa.2024.8528
  • Silva, J.V.B., Oliveria, C.A.F., Ramalho, L.N.Z. (2022). An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. Food Science and Technology, 42 (6). https://doi:10.1590/fst.48520
  • Sipos, P., Peles, F., Brassó, D.L., Béri, B., Pusztahelyi, T., Pócsi, I., Gyori, Z. (2021). Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins, 13, 204. https://doi.org/10.3390/toxins13030204
  • Taheur, F. B., Fedhila, K., Chaieb, K., Kouidhi, B., Bakhrouf, A., & Abrunhosa, L. (2017). Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology, 251, 1-7. https://doi.org/10.1016/ j.ijfoodmicro.2017.03.021.
  • Torlak, E. (2019). Use of gaseous ozone for reduction of ochratoxin A and fungal populations on sultanas. Australian Journal of Grape and Wine Research, 25(1), 25-29. https://doi.org/ 10.1111/ajgw.12362
  • Viviane, I., Masabo, E., Joseph, H., Rene, M., Bizuru, E. (2021). Mycotoxin’s Infections and Prevention Methods: State of the Art. Agricultural Sciences, 12,1269-1285. https://doi.org/10.4236/ as.2021.1211081
  • Zhao, L., Qi, D., Ma, Q. (2023). Novel strategies for the biodegradation and detoxification of mycotoxins in post-harvest grain. Toxins, 15, 445. https://doi.org/10.3390/toxins15070445
  • Zhuang, K., Zhang, C., Zhang, W., Xu, W., Tao, Q., Wang, G., Ding, W. (2020). Effect of different ozone treatments on the degradation of deoxynivalenol and flour quality in Fusarium-contaminated wheat. CyTA-Journal of Food, 18(1), 776-784. https://doi.org/10.1080/ 19476337.2020.1849406
  • Wang, Y., Shang, J., Cai, M., Liu, Y., Kai Yang, K. (2023). Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Critical Reviews in Food Science and Nutrition, 63 (33), 11668–11678. https://doi.org/10.1080/ 10408398.2022.2095554
  • Wang, Y., Zhou, A., Yu, B., Sun, X. (2024). Recent advances in non-contact food decontamination technologies for removing mycotoxins and fungal contaminants. Foods, 13, 2244. https://doi.org/10.3390/foods13142244 Woldemichael Woldemariam, H., Emire, S.A. (2019).High pressure processing of foods for microbial and mycotoxins control: current trends and future prospects. Cogent Food & Agriculture, 5(1), 1622184. https://doi.org/10.1080/ 23311932.2019.1622184
  • Xu, H., Wang,L., Sun,J., Wang, L., Guo,H., Ye, Y., Sun, X. (2022). Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition, 62(18), 4951 4969. https://doi.org/10.1080/10408398.2021.1879730

PHYSICAL, CHEMICAL AND BIOLOGICAL METHODS USED IN DETOXIFICATION OF MICOTOXINS

Yıl 2025, Cilt: 50 Sayı: 4, 629 - 643, 10.08.2025
https://doi.org/10.15237/gida.GD25052

Öz

Mycotoxins are recognized as a major problem worldwide due to the threat they pose to public health and their negative impact on economies. Therefore, efforts to prevent, partially reduce or completely eliminate mycotoxins in foods are important. When some of the industrial and domestic processes such as heat treatment, fermentation and irradiation applied to prevent mycotoxins in foods are examined, it has been observed that these processes are insufficient to completely remove mycotoxins. Therefore, recent years have focused on the development of complementary strategies and innovative methods to control mycotoxins. Many physical (irradiation, cold plasma, high pressure, pulsed electric fields), chemical (ammonia, chitosan, ozone) and biological (lactic acid bacteria, probiotics) methods are used for mycotoxin detoxification. Compared to physical and chemical methods, detoxification processes by biological methods are considered to be the most promising approach as they cause less loss of nutritional value of food products.

Kaynakça

  • Abraham, N., Schroeter, K. L., Zhu, Y., Chan, J., Evans, N., Kimber, M. S., Seah, S. Y. (2022). Structure–function characterization of an aldo–keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Scientific Reports, 12(1), 14737. https://doi.org/10.1038/ s41598-022-19040-8
  • Adeyeye, S.A.O. (2016). Fungal mycotoxins in foods: a review. Cogent Food & Agriculture, 2: 1213127. http://dx.doi.org/10.1080/ 23311932.2016.1213127
  • Afsah-Hejri, L., Hajeb, P., Ehsani, R.J. (2020). Application of ozone for degradation ofmycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety 1-32. http://dx.doi.org/10.1111/1541-4337.12594
  • Akbulut, İ. (2023). Sultaniye cinsi kuru üzümde bulunan Okratoksin (OTA) detoksifikasyonunda soğuk plazma teknolojisinin kullanımı ve kalite özelliklerinin incelenmesi. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İzmir Türkiye, 150 s.
  • Alizadeh, A. M., Hashempour-Baltork, F., Khaneghah, A. M., Hosseini, H. (2021). New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Current Opinion in Food Science, 39, 7-15. http://dx.doi.org/10.1016/j.cofs.2020.12.006
  • Alnaemi, H. S., Dawood, T. N., Algwari, Q. T. (2025). Ultraviolet C and Ozone Application for Detoxification of Aflatoxin B1, Ochratoxin A, and Fumonisin B1 in Poultry Feeds. Egyptian Journal of Veterinary Sciences, 56(4), 797-813. https://doi.org/10.21608/ejvs.2024.277904.1937
  • Aloui, A., Salah-Abbès J.B., Zinedine, A., Riba,A., Durand, N., Meile, J.C.,Montet, D., Catherine Brabet, C., Abbès, S. (2023). Prevention and detoxification of mycotoxins in human food and animal feed using bio-resources from south mediterranean countries: a critical review. Critical Reviews in Toxicology, 53(2), 117-130. https://doi.org/10.1080/10408444.2023.2211178
  • Avsaroglu, M. D., Bozoglu, F., Alpas, H., Largeteau, A., & Demazeau, G. (2015). Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Pressure Research, 35(2), 214-222. https://doi.org/ 10.1080/08957959.2015.1027700
  • Awuchi, C.G., Nyakundi Ondari, E., Ogbonna, C.U., Upadhyay, A.K., Baran, K., Okpala, C.O.R., Korzeniowska, M., Raquel P. F. Guiné, R.P.F. (2021). Mycotoxins affecting animals, foods, humans, and plants: types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies a revisit. Foods, 10, 1279. https://doi.org/10.3390/foods10061279
  • Babaee, R., Karami-Osboo, R., Mirabolfathy, M. (2021). An overview of effective detoxification methods for aflatoxin-contaminated pistachio. Pistachio and Health Journal, 4(2), 75-93. https://10.22123/PHJ.2021.283744.1096
  • Bahari, HR., Khaneghah, AM., Ismail Eş, I. (2024). Upconversion nanoparticles-modified aptasensors for highly sensitivemycotoxin detection for food quality and safety. Comprehensive Reviews in Food Science and Food Safety, 23(3). https://doi.org/10.1111/1541-4337.13369
  • Balwan, W.K., Neelam Saba, N., Kour, S. (2023). Study of impact of mycotoxins on the human health. Scholars Bulletin, 9(2), 19-23. https://doi.org/10.36348/sb.2023.v09i02.003
  • Benzer Gürel, D. (2023). Atmosferik soğuk plazmanın yüksek ihracat kapasitesine sahip kuru incir ve kuru üzümdeki aflatoksinler ve okratoksin a üzerine etkisi. Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Manisa, Türkiye, 127s.
  • Calado, T., Fernández-Cruz, M.L., Verde, S.C., Venâncio, A., Abrunhosa, L. (2018). Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 240, 463–471. http://dx.doi.org/ 10.1016/j.foodchem.2017.07.136
  • Conte, G., Fontanelli, M., Galli, F., Cotrozzi, L., Pagni, L., Pellegrini, E. (2020). Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins, 12(8), 486. https://doi.org/ 10.3390/toxins12080486
  • Çetin, Z. (2024). Sirkede penicillium expansum küfünün inaktivasyonu ve patulin degradasyonunda leuconostoc mesenteroides etkinliğinin incelenmesi. İstanbul Aydın Üniversitesi Yüksek Lisans Tezi Lisansüstü Eğitim Enstitüsü, İstanbul
  • Daou, R., Joubrane, K., Maround, R., Khabbaz, L.R., Ali Ismail , A., André El Khoury, A.E. (2021). Mycotoxins: Factors influencing production and control strategies. Agriculture and Food, 6(1), 416–447. https://doi.org/ 10.3934/agrfood.2021025
  • Ding, L., Han, M., Wang, X., Yifei Guo, Y. (2023). Ochratoxin A: overview of prevention, removal, and detoxification methods. Toxins, 15, 565. https://doi.org/10.3390/toxins15090565
  • Elkenany, R.M., Awad, A. (2020). Types of Mycotoxins and different approaches used for their detection in foodstuffs. Mansoura Veterinary Medical Journal, 21(4), 25-32. https://doi.org/ 10.35943/mvmj.2021.161191
  • El-Sayed, R.A., Jebur, A.B., Kang, W., El-Demerdash, F.M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91- 102. https://doi.org/ 10.1016/j.jfutfo.2022.03.002 2772-5669
  • Guo, Y., Lihong Zhao, L., Ma, Q., Ji, C. (2021). Novel strategies for degradation of aflatoxins in food and feed: A review. Food Research International, 14,109878. https://doi.org/10.1016/ j.foodres.2020.109878
  • Gonçalves, B. L., Muaz, K., Coppa, C. F. S. C., Rosim, R. E., Kamimura, E. S., Oliveira, C. A. F., Corassin, C. H. (2020). Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Research International, 136, 109604. https://doi.org/10.1016/j.foodres.2020.109604
  • Janik, E., , Niemcewicz, M., Ceremuga, M., Stela, M., Bijak, J.S., Siadkowski, A., Bijak, M. (2020). Molecular aspects of mycotoxins—a serious problem for human health. International Journal of Molecular Sciences, 21, 8187. https://doi.org/ 10.3390/ijms21218187
  • Hashemi, S. M. B., & Amiri, M. J. (2020). A comparative adsorption study of aflatoxin B1 and aflatoxin G1 in almond butter fermented by Lactobacillus fermentum and Lactobacillus delbrueckii subsp. lactis. Lwt-Food Science and Technology, 128, 109500.https://doi.org/10.1016/j.lwt.2020.109500
  • Hassanpour, M., Rezaie, M. R., & Baghizadeh, A. (2019). Practical analysis of aflatoxin M1 reduction in pasteurized Milk using low dose gamma irradiation. Journal of Environmental Health Science and Engineering, 17, 863-872. https://doi.org/10.1007/s40201-019-00403-9
  • Karlovsky, P., Suman, M., Berthiller, F., Meester, J., Eisenbrand, G., Perrin, I., Oswald, I.P., Speijers, G., Chiodini, A., Recker, T., Dussort, P. (2016). Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 32,179– https://doi.org/205.10.1007/s12550-016-0257-7
  • Khan, R., Anwar, F., Ghazali F.M. (2024). A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon, 10(8), e28361. https://doi.org/10.1016/j.heliyon.2024.e28361
  • Kurup, A. H., Patras, A., Pendyala, B., Vergne, M. J., & Bansode, R. R. (2022). Evaluation of Ultraviolet-Light (UV-A) Emitting Diodes Technology on the Reduction of Spiked Aflatoxin B 1 and Aflatoxin M 1 in Whole Milk. Food and Bioprocess Technology, 1-12. https://doi.org/10.1007/s11947-021-02731-x
  • Lach, M., Kotarska, K. (2024). Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules, 29(19), 4563. https://doi.org/10.3390/molecules29194563
  • Luo, Y., Zhou, Z., Yue, T. (2017). Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chemistry, 221, 317-323. https://doi.org/10.1016/ j.foodchem.2016.09.008
  • Mafe, A. N., Büsselberg, D. (2024). Mycotoxins in food: cancer risks and strategies for control. Foods, 13: 3502. https://doi.org/10.3390/foods13213502
  • Mir, S.A., Dar, B.N., Shah, M.A. Sofi,S.A., Hamdani, A.M. Oliveira , C.A.F., Moosavi,M.H., Khaneghah, A.M., Sant’AnA, A.S. (2021). Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148, 111976. https://doi.org/ 10.1016/j.fct.2021.111976
  • Mohammadi, H., Mazloomi, S. M., Eskandari, M. H., Aminlari, M., Niakousari, M. (2017). The effect of ozone on aflatoxin M1, oxidative stability, carotenoid content and the microbial count of milk. Ozone: Science & Engineering, 39(6), 447-453. https://doi.org/10.1080/ 01919512.2017.1329647
  • Morshedi, A., Shakerardekani, A., Reza Karazhian, R., Mohammad Morshedi, M., Valdes, M.E., Mohammadi-Moghaddam, T., Kariminejad, M. (2023). Mycotoxins’ contamination in food and feeds: a review. Journal of Food Chemistry & Nanotechnology, 9(3), 141-149. https://doi.org/10.17756/jfcn.2023-160
  • Muaz, K., Riaz, M., Oliveira, C. A. F. D., Akhtar, S., Ali, S. W., Nadeem, H., Park, S., B. (2022). Aflatoxin M1 in milk and dairy products: Global occurrence and potential decontamination strategies. Toxin Reviews, 41(2), 588-605. https://doi.org/10.1080/15569543.2021.1873387
  • Muhialdin, B.J., Saari, N., Meor Hussin, A.S. (2020). Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules, 25, 2655. https://doi.org/10.3390/ molecules25112655
  • Nagda, A., Meena, M. (2024). Alternaria mycotoxins in food and feed: Occurrence, biosynthesis, toxicity, analytical methods, control and detoxification strategies. Food Control, 158, 110211. https://doi.org/10.1016/ j.foodcont.2023.110211
  • Nesic, K., Habschied, K., Mastanjevic, K. (2021). Possibilities for the biological control of mycotoxins in food and feed. Toxins, 13, 198. https://doi.org/10.3390/toxins13030198
  • Niedźwiedź, I., Waśko, A., Pawłat, J., Polak-Berecka, M. (2019). The state of research on antimicrobial activity of cold plasma. Polish Journal of Microbiology, 68(2), 153-164. https://doi.org/ 10.33073/pjm-2019-028.
  • Nguyen, T., Palmer, J., Loo, T., Shilton, A., Petcu, M., Newson, H. L., Flint, S. (2022). Investigation of UV light treatment (254 nm) on the reduction of aflatoxin M1 in skim milk and degradation products after treatment. Food Chemistry, 390, 133165. https://doi.org/10.1016/ j.foodchem.2022.133165
  • Omak, G., Özcan, T., Ersan, L. Y. (2016). Biyolojik detoksifikasyon ve probiyotikler. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(1), 157-168.
  • Pallarés, N., Barba, F. J., Berrada, H., Tolosa, J., Ferrer, E. (2020). Pulsed electric fields (PEF) to mitigate emerging mycotoxins in juices and smoothies. Applied Sciences, 10(19), 6989. https://doi.org/10.3390/app10196989
  • Peng, Z., Zhang, Y., Ai. Z., Ravi Pandiselvam, R., Jiale Guo, J., Anjineyulu Kothakota, A., Yanhong Liu, Y. (2023). Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Comprehensive Reviews in Food Science and Food Safety, 22, 4030–4052. https://doi.org/ 10.1111/1541-4337.13197
  • Petrovic, E., Cosic, J., Vrandecic, K., Godena, K.S. (2023). Occurrence of mycotoxins in food and beverages. Journal of Central European Agriculture, 24(1), 137-150. https://doi.org/ 10.5513/JCEA01/24.1.3704 Piotrowska, M. (2021). Microbiological decontamination of mycotoxins: opportunities and limitations. Toxins, 13, 819. https://doi.org/10.3390/toxins13110819
  • Pleadin, J., Jadranka Frece, J., Ksenija Markov, K. (2019). Mycotoxins in food and feed. Advances in Food and Nutrition Research, 89, 297-345. https://doi.org/10.1016/bs.afnr.2019.02.007
  • Rao, W., Li, Y., Dhaliwal, H., Feng, M., Xiang, Q., Roopesh, M. S., Du, L. (2023). The application of cold plasma technology in low-moisture foods. Food Engineering Reviews, 15(1), 86-112. https://doi.org/10.1007/s12393-022-09329-9
  • Rodríguez-Bencomo, J. J., Sanchis, V., Viñas, I., Martín-Belloso, O., Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry, 315, 126283. https://doi.org/10.1016/ j.foodchem.2020.126283
  • Ryu D., Bianchini, A., Bullerman, L.B. (2008). Effects of processing on mycotoxins. Stewart Postharvest Review, 6, 5. https://doi.org/ 10.2212/spr.2008.6.5
  • Saghir, S. A., Bancroft, J. (2024). Molds and mycotoxins indoors I: Current issues and way forward. Archives of Clinical Toxicology, 7(1), 1-7. https://doi.org/10.46439/toxicology.7.032
  • Schrenk, D., Bignami, M., Bodin, L., Chipman, J.K., Mazo, J., Grasl-Kraupp, B., Hoogenboom, L., Leblanc, J.C., Nebbia, C.S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Schwerdtle, T., Vleminckx, C., Wallace, H., Rose, M., Cottrill, B., Lundebye, A.K., Metzler, M., Ben Whitty, B., Alberto Navarro-Villa, A. (2024). Guidance for the assessment of detoxification processes in feed. EFSA Journal, 22, e8528. https://doi.org/10.2903/j.efsa.2024.8528
  • Silva, J.V.B., Oliveria, C.A.F., Ramalho, L.N.Z. (2022). An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. Food Science and Technology, 42 (6). https://doi:10.1590/fst.48520
  • Sipos, P., Peles, F., Brassó, D.L., Béri, B., Pusztahelyi, T., Pócsi, I., Gyori, Z. (2021). Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins, 13, 204. https://doi.org/10.3390/toxins13030204
  • Taheur, F. B., Fedhila, K., Chaieb, K., Kouidhi, B., Bakhrouf, A., & Abrunhosa, L. (2017). Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology, 251, 1-7. https://doi.org/10.1016/ j.ijfoodmicro.2017.03.021.
  • Torlak, E. (2019). Use of gaseous ozone for reduction of ochratoxin A and fungal populations on sultanas. Australian Journal of Grape and Wine Research, 25(1), 25-29. https://doi.org/ 10.1111/ajgw.12362
  • Viviane, I., Masabo, E., Joseph, H., Rene, M., Bizuru, E. (2021). Mycotoxin’s Infections and Prevention Methods: State of the Art. Agricultural Sciences, 12,1269-1285. https://doi.org/10.4236/ as.2021.1211081
  • Zhao, L., Qi, D., Ma, Q. (2023). Novel strategies for the biodegradation and detoxification of mycotoxins in post-harvest grain. Toxins, 15, 445. https://doi.org/10.3390/toxins15070445
  • Zhuang, K., Zhang, C., Zhang, W., Xu, W., Tao, Q., Wang, G., Ding, W. (2020). Effect of different ozone treatments on the degradation of deoxynivalenol and flour quality in Fusarium-contaminated wheat. CyTA-Journal of Food, 18(1), 776-784. https://doi.org/10.1080/ 19476337.2020.1849406
  • Wang, Y., Shang, J., Cai, M., Liu, Y., Kai Yang, K. (2023). Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Critical Reviews in Food Science and Nutrition, 63 (33), 11668–11678. https://doi.org/10.1080/ 10408398.2022.2095554
  • Wang, Y., Zhou, A., Yu, B., Sun, X. (2024). Recent advances in non-contact food decontamination technologies for removing mycotoxins and fungal contaminants. Foods, 13, 2244. https://doi.org/10.3390/foods13142244 Woldemichael Woldemariam, H., Emire, S.A. (2019).High pressure processing of foods for microbial and mycotoxins control: current trends and future prospects. Cogent Food & Agriculture, 5(1), 1622184. https://doi.org/10.1080/ 23311932.2019.1622184
  • Xu, H., Wang,L., Sun,J., Wang, L., Guo,H., Ye, Y., Sun, X. (2022). Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition, 62(18), 4951 4969. https://doi.org/10.1080/10408398.2021.1879730
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Gıda Hijyeni ve Teknolojisi
Bölüm Derleme
Yazarlar

Hilal Demirpençe 0000-0001-6121-8909

Devrim Beyaz 0000-0001-8935-9850

Gönderilme Tarihi 11 Nisan 2025
Kabul Tarihi 21 Temmuz 2025
Yayımlanma Tarihi 10 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 4

Kaynak Göster

APA Demirpençe, H., & Beyaz, D. (2025). MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER. Gıda, 50(4), 629-643. https://doi.org/10.15237/gida.GD25052
AMA Demirpençe H, Beyaz D. MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER. GIDA. Ağustos 2025;50(4):629-643. doi:10.15237/gida.GD25052
Chicago Demirpençe, Hilal, ve Devrim Beyaz. “MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER”. Gıda 50, sy. 4 (Ağustos 2025): 629-43. https://doi.org/10.15237/gida.GD25052.
EndNote Demirpençe H, Beyaz D (01 Ağustos 2025) MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER. Gıda 50 4 629–643.
IEEE H. Demirpençe ve D. Beyaz, “MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER”, GIDA, c. 50, sy. 4, ss. 629–643, 2025, doi: 10.15237/gida.GD25052.
ISNAD Demirpençe, Hilal - Beyaz, Devrim. “MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER”. Gıda 50/4 (Ağustos2025), 629-643. https://doi.org/10.15237/gida.GD25052.
JAMA Demirpençe H, Beyaz D. MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER. GIDA. 2025;50:629–643.
MLA Demirpençe, Hilal ve Devrim Beyaz. “MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER”. Gıda, c. 50, sy. 4, 2025, ss. 629-43, doi:10.15237/gida.GD25052.
Vancouver Demirpençe H, Beyaz D. MİKOTOKSİNLERİN DETOKSİFİKASYONUNDA KULLANILAN FİZİKSEL, KİMYASAL ve BİYOLOJİK YÖNTEMLER. GIDA. 2025;50(4):629-43.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/