Araştırma Makalesi
BibTex RIS Kaynak Göster

BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI

Yıl 2020, , 872 - 880, 19.08.2020
https://doi.org/10.15237/gida.GD20076

Öz

Starter kültür, kontrollü koşullarda standart kültür elde etmek için endüstride kullanılan mikroorganizmalardır. Mayalar destekleyici kültürler olarak fermente ürünlerin olgunlaşmasında, aroma ve kıvamın gelişmesinde katkıda bulunmaktadırlar. Cryptococcus humicola suşları birçok peynir çeşidinde doğal olarak bulunmaktadır. Bu mayanın gıda endüstrisinde kullanılabilmesi için starter özelliklerinin belirlenmesi oldukça önemlidir. Bu çalışmada peynirden izole edilen 8 Cyrptococcus humicola maya izolatlarının bazı starter kültür özelliklerinin belirlenmesi amaçlanmıştır. Maya izolatlarının proteolitik ve lipolitik aktiviteleri, maya içeren steril disklerin etrafında oluşan şeffaf zonlara göre tayin edilmiştir. Mayaların proteolitik aktiviteleri sonucu oluşturdukları şeffaf zon çaplarının büyüklükleri 10.23-17.40 mm arasında ölçülürken, lipolitik aktiviteleri sonucu oluşan zon çapları ise 9.12-12.44 mm arasında değişmiştir. 8 maya izolatından 2 izolat (C. humicola MBP2 ve MBP3) üreyi hidroliz edemezken, 1 izolat (C. humicola MBP7) üreyi güçlü hidroliz etmiştir. Farklı tuz konsantrasyonlarında maya izolatlarının (MBP4 ve MBP6 izolatları hariç) en yüksek canlılığın %4 NaCl konsantrasyonunun olduğu tespit edilmiştir. Ayrıca, C. humicola MBP4 ve MBP6 izolatları hariç diğer izolatların 37°C’de daha yüksek canlılık değerlerine sahip olduğu belirlenmiştir. Mayaların amilaz enzim aktivitelerinin 8.87-14.54 mm arasında değişmektedir.

Kaynakça

  • Abdel Nasser, A., El- Moghaz, 2010. Comprative study of salt tolerance in Saccharomycescerevisiae and Pichia pastoris yeast strains. Adv Biol, 1(1):169-176.
  • Andrade, R. P., Melo, C. N., Genisheva, Z., Schwan, R. F. and Duarte, W. F. (2017). Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Food Res Int, 91, 72-79.
  • Asada, C., Sasaki, C., Oka, C. (2020). Ethanol production from sugarcane bagasse using pressurized microwave treatment with ınorganic salts and salt-tolerant yeast. Waste Biomass Valor, 11, DOI: 10.1007/s12649-018-0527-z.
  • Azad, K., Tomar, R. (2016). Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae. Yeast, 33 (6), 217-226.
  • Baeza M., Alcaíno J., Cifuentes V., Turchetti B., Buzzini P. (2017) Cold-active enzymes from cold-adapted yeasts. Biotechnol Yeasts Filament Fungi, 48 (6), 297-324, DOI: 10.1007/978-3-319-58829-2_10.
  • Barnett, J., A. Payne, R.W. and Yarrow, D. (2000). Yeasts: Characteristics and ıdentification, (3rd ed.), Cambridge, United Kingdom. Cambridge University Press.
  • Bintsis, T. and Robinson, R. K. (2004). A study of the adjunct cultures on the aroma compounds of Feta-type cheese. Food Chem, 88(3), 435-441.
  • Budak, Ş., Wiebenga, A., Bron, P., Vries, R. (2016). Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Int J Food Microbiol, 237 (21), 17-27.
  • Carrasco, M., Villarreal, P., Barahona, S. et al. (2016). Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol, 16 (21).
  • Cotter, P. D., Beresford, T. P. (2017). Microbiome Changes During Ripening. In: Cheese: Chemistry, Physics and Microbiology (4th Edition), McSweeney, P., Fox, P., Cotter, P. Everett, D. (Eds.), Volume 1, Academic Press, the UK, pp. 389-409.
  • Darsanaki, R.K., Aliabadi, M.A. and Chakoosari, M.M.D., 2013. Antibiotic resistance of lactic acid bacteria. Sci J Microbiol, 2(11), 201-206.
  • De Vuyst L, Harth H, Van Kerrebroeck S, Leroy F. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol, 2016;239: 26–34.
  • Demirgül, F. and Tuncer, Y. (2017). Detection of Antibiotic Resistance and Resistance Genes in Enterococci Isolated from Sucuk, a Traditional Turkish Dry-Fermented Sausage. Korean J Food Sci Anim Resour, 37(5), 670-681. DOİ: 10.5851/kosfa.2017.37.5.670.
  • Eroğlu, E., Özcan, T. (2018). Sütün Enzimatik Koagülasyonu ve Peynir Üretiminde Bitkisel Pıhtılaştırıcılar. Bursa Uludag Üniv. Ziraat Fak. Derg., 32(2): 201-214.
  • Escribano, R., González-Arenzana, L., Garijo, P. et al. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J Food Sci Technol 54, 1555–1564 (2017).
  • Fell, J. W., and A. Statzell-Tallman, 1998. Cryptococcus Vuillemin, p. 742-767. In C. P. Kurtzman and J. W. Fell (ed.), The yeasts: a taxonomic study. Elsevier, Amsterdam, The Netherlands.
  • Ferreira, A.D. and Viljoen B.C. (2003). Yeasts as adjunct starters inmatured Cheddar cheese, Int J Food Microbiol, 86(1-2), 131-140.
  • Fröhlich-Wyder, M. T., Arias-Roth, E., Jakob, E. (2019). Cheese Yeasts. Yeasts, 36(3): 129-141. Doi: 10.1002/yea.3368.
  • Guerzoni, M.E., Gobbetti, M., Lanciotti, R., Vannini, L. and ChavesL.C. (2001).Yarrowia lipolytica as potential ripening agent inmilk products, Yeasts in The Dairy Industry: Positive and Negative Aspects, Proceedings of International Dairy Federation Symposium, Copenhagen, 23-33.
  • Gürsoy, A., Türkmen, N. (2018). Adjunct Cultures in Cheese Technology. In: Microbial Cultures and Enzymes in Dairy Technology, IGI Global, Hershey PA, the USA, pp. 234-256.
  • Halkman, A.K. 2019. 08. Sayım Yöntemleri. Gıda Mikrobiyolojisi. Editör: A. Kadir Halkman. Başak Matbaacılık ve Tanıtım Hizmetleri Ltd, Ankara, 648 s. ISBN: 978-605-245-683-5
  • Irlinger, F., Helinck, S., Jany, J. L. (2017). Secondary and Adjunct Cultures. In: Cheese: Chemistry, Physics and Microbiology (4th Edition), McSweeney, P., Fox, P., Cotter, P. Everett, D. (Eds.), Volume 1, Academic Press, the UK, pp. 273-300.
  • Kara, R., Akkaya, L. (2015). Afyon Tulum Peynirinin Mikrobiyolojik ve Fiziko-Kimyasal Özellikleri ile Laktik Asit Bakteri Dağılımlarının Belirlenmesi. Aku J. Sci. Eng, 15: 1-6. Doi: 10.5578/fmbd.8717.
  • Karaman, K., Sagdic, O., Durak, M.Z. (2018). Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. Food Sci Technol, 91, 557-567.
  • Kieliszek, M., Kot, A., Bzducha-Wróbel, A., BŁażejak, S., Gientka, I., Kurcz, A. (2017). Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biol Rev, 31 (4), 185-198.
  • Krishan K. Selwal, Yueh-Fen Li & Zhongtang Yu (2017) Functional display of amylase on yeast surface from Rhizopus oryzae as a novel enzyme delivery method. Food Biotechnol, 31:4, 233-244, DOI: 10.1080/08905436.2017.1369098.
  • Ksonzeková P, Bystrickyb P, Vlckováb S, Pätoprst´yb, V, Pulzováa L, Mudroˇnováa D, Kubaskováa T, Csanka T, Tkáciková L. 2016. Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr Polym, 141: 10-19.
  • Liu, J., Li, L., Zhou, L., Li, B. and Xu, Z. (2017). Effect of ultrasound treatment conditions on Saccharomyces cerevisiae by response surface methodology. Microb Pathog, 111,497-502. Molon, M. and Zadrag-Tecza, R. (2016). Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae. Biogerontology, 17(2), 347-357.
  • Oğuz, Ş , Andiç, S . (2019). Peynir Üretiminde Kullanılan Starter Kültürler. Gıda, 44 (6), 1174-1196 . DOI: 10.15237/gida.GD19121.
  • Picon, A. (2018). Cheese Microbial Ecology and Safety. In: Global Cheesemaking Technology: Cheese Quality and Characteristics, Papademas, P., Bintsis, T. (Eds.), John Wiley & Sons Ltd, West Sussex, UK, pp. 71-99.
  • Piotr, J., Maria, W., Barbara, A., Jozafe, C., Adam, M., 2005. Diversity of physiological and biochemicial properties within yeast species occurring in rpkpol cheese. Pol. J. Food Nutr. Sci. 3:257-261.
  • Qun Wu, Jianchun Lin, Kaixiang Cui, Rubin Du, Yang Zhu, and Yan Xu. (2017). Effect of microbial ınteraction on urea metabolism in chinese liquor fermentation. J Agric Food Chem, 65 (50), 11133-11139 DOI: 10.1021/acs.jafc.7b04099.
  • Ray, M. K., Devi, U., Kumar, S, 1992. Extracellular protease from the antarctic yeast Candida humicola. Cent Cell Mol Bio, 58:6, 1918-1923. 0099-2240/92/061918.
  • Rossouw D, Bauer FF. (2016) Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol, 55:32–46.
  • Russo, P.; Fares, C.; Longo, A.; Spano, G.; Capozzi, V. (2017). Lactobacillus plantarum with broad antifungal activity as a protective starter culture for bread production. Food, 6 (12), 110, DOI: 10.3390/foods6120110.
  • Soran, G. Ş., Çelik, Ş. (2018). Telemesi Haşlanan Geleneksel Peynirlerimizin Üretimine Uygun Doğal Starter Kültür Geliştirilmesi. HU. Müh. Derg., 3(1): 15-19.
  • Soyoung Kim, Honk Kim and Hee jeong Chae, 2004. Selection of probiotic yeasts from soil, characterization and application for feed additives. Agric. Chem Biotechnol. 47(1), 20-26.
  • Suzzi, G., Lanorte, M.T., Galagno,F., Andrighetto,C., Lombardi,A., Lanciotti,R. and Guerzoni, M.E., (2001). Proteolytic, lipolytic and molecular characterization of Yarrowia lipolytica ısolated from cheese, Int J Food Microbiol, (69):69-77.
  • Tekinşen, OC., (2000). Süt Ürünleri Teknolojisi. Selçuk Üniv Basımevi, Konya.
  • Wyder, M.T., (2001). Yeasts in Dairy Products, Swiss Federal Dairy Research Station, Fam Info No: 425, Liebefeld, CH-3003 Berne.

INVESTIGATION OF STARTER ACTIVITY OF THE YEAST SPECIES CRYPTOCOCCUS HUMICOLA ISOLATED FROM WHITE CHEESE

Yıl 2020, , 872 - 880, 19.08.2020
https://doi.org/10.15237/gida.GD20076

Öz

Starter culture are microorganisms used in industry to achieve standard culture under controlled conditions. Yeasts as supportive cultures contribute to the development of ripening, aroma and consistency of fermented products. Cryptococcus humicola strains are naturally found in many cheese varieties. To use this yeast in the food industry, it is very important to determine the starter properties. In this study, it was aimed to determine some starter culture properties of 8 Cyrptococcus humicola yeast isolates isolated from cheese. Proteolytic and lipolytic activities of these isolates were determined according to clear zones around the sterile discs. The diameters of clear zones of the yeasts were measured in the range of 10.23 mm to 17.40 mm at proteolytic activity whereas zone diameters were measured in the range between 9.12 mm and 12.44 mm at lipolytic activity. While two isolates (C. humicola MBP2 and MBP3) from eight yeast isolates could not hydrolyze urea, one isolate (C. humicola MBP7) effectively hydrolyzed urea. At different salt concentrations, yeast isolates (except MBP4 and MBP6 isolates) were found to have the highest viability at 4% NaCl concentration. Except for C. humicola MBP4 and C. humicola MBP6 isolates, other isolates had higher viability values at 37°C. The amylase enzyme activity zone diameters of the yeasts were measured between 8.87-14.54 mm.

Kaynakça

  • Abdel Nasser, A., El- Moghaz, 2010. Comprative study of salt tolerance in Saccharomycescerevisiae and Pichia pastoris yeast strains. Adv Biol, 1(1):169-176.
  • Andrade, R. P., Melo, C. N., Genisheva, Z., Schwan, R. F. and Duarte, W. F. (2017). Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Food Res Int, 91, 72-79.
  • Asada, C., Sasaki, C., Oka, C. (2020). Ethanol production from sugarcane bagasse using pressurized microwave treatment with ınorganic salts and salt-tolerant yeast. Waste Biomass Valor, 11, DOI: 10.1007/s12649-018-0527-z.
  • Azad, K., Tomar, R. (2016). Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae. Yeast, 33 (6), 217-226.
  • Baeza M., Alcaíno J., Cifuentes V., Turchetti B., Buzzini P. (2017) Cold-active enzymes from cold-adapted yeasts. Biotechnol Yeasts Filament Fungi, 48 (6), 297-324, DOI: 10.1007/978-3-319-58829-2_10.
  • Barnett, J., A. Payne, R.W. and Yarrow, D. (2000). Yeasts: Characteristics and ıdentification, (3rd ed.), Cambridge, United Kingdom. Cambridge University Press.
  • Bintsis, T. and Robinson, R. K. (2004). A study of the adjunct cultures on the aroma compounds of Feta-type cheese. Food Chem, 88(3), 435-441.
  • Budak, Ş., Wiebenga, A., Bron, P., Vries, R. (2016). Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Int J Food Microbiol, 237 (21), 17-27.
  • Carrasco, M., Villarreal, P., Barahona, S. et al. (2016). Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol, 16 (21).
  • Cotter, P. D., Beresford, T. P. (2017). Microbiome Changes During Ripening. In: Cheese: Chemistry, Physics and Microbiology (4th Edition), McSweeney, P., Fox, P., Cotter, P. Everett, D. (Eds.), Volume 1, Academic Press, the UK, pp. 389-409.
  • Darsanaki, R.K., Aliabadi, M.A. and Chakoosari, M.M.D., 2013. Antibiotic resistance of lactic acid bacteria. Sci J Microbiol, 2(11), 201-206.
  • De Vuyst L, Harth H, Van Kerrebroeck S, Leroy F. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol, 2016;239: 26–34.
  • Demirgül, F. and Tuncer, Y. (2017). Detection of Antibiotic Resistance and Resistance Genes in Enterococci Isolated from Sucuk, a Traditional Turkish Dry-Fermented Sausage. Korean J Food Sci Anim Resour, 37(5), 670-681. DOİ: 10.5851/kosfa.2017.37.5.670.
  • Eroğlu, E., Özcan, T. (2018). Sütün Enzimatik Koagülasyonu ve Peynir Üretiminde Bitkisel Pıhtılaştırıcılar. Bursa Uludag Üniv. Ziraat Fak. Derg., 32(2): 201-214.
  • Escribano, R., González-Arenzana, L., Garijo, P. et al. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J Food Sci Technol 54, 1555–1564 (2017).
  • Fell, J. W., and A. Statzell-Tallman, 1998. Cryptococcus Vuillemin, p. 742-767. In C. P. Kurtzman and J. W. Fell (ed.), The yeasts: a taxonomic study. Elsevier, Amsterdam, The Netherlands.
  • Ferreira, A.D. and Viljoen B.C. (2003). Yeasts as adjunct starters inmatured Cheddar cheese, Int J Food Microbiol, 86(1-2), 131-140.
  • Fröhlich-Wyder, M. T., Arias-Roth, E., Jakob, E. (2019). Cheese Yeasts. Yeasts, 36(3): 129-141. Doi: 10.1002/yea.3368.
  • Guerzoni, M.E., Gobbetti, M., Lanciotti, R., Vannini, L. and ChavesL.C. (2001).Yarrowia lipolytica as potential ripening agent inmilk products, Yeasts in The Dairy Industry: Positive and Negative Aspects, Proceedings of International Dairy Federation Symposium, Copenhagen, 23-33.
  • Gürsoy, A., Türkmen, N. (2018). Adjunct Cultures in Cheese Technology. In: Microbial Cultures and Enzymes in Dairy Technology, IGI Global, Hershey PA, the USA, pp. 234-256.
  • Halkman, A.K. 2019. 08. Sayım Yöntemleri. Gıda Mikrobiyolojisi. Editör: A. Kadir Halkman. Başak Matbaacılık ve Tanıtım Hizmetleri Ltd, Ankara, 648 s. ISBN: 978-605-245-683-5
  • Irlinger, F., Helinck, S., Jany, J. L. (2017). Secondary and Adjunct Cultures. In: Cheese: Chemistry, Physics and Microbiology (4th Edition), McSweeney, P., Fox, P., Cotter, P. Everett, D. (Eds.), Volume 1, Academic Press, the UK, pp. 273-300.
  • Kara, R., Akkaya, L. (2015). Afyon Tulum Peynirinin Mikrobiyolojik ve Fiziko-Kimyasal Özellikleri ile Laktik Asit Bakteri Dağılımlarının Belirlenmesi. Aku J. Sci. Eng, 15: 1-6. Doi: 10.5578/fmbd.8717.
  • Karaman, K., Sagdic, O., Durak, M.Z. (2018). Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. Food Sci Technol, 91, 557-567.
  • Kieliszek, M., Kot, A., Bzducha-Wróbel, A., BŁażejak, S., Gientka, I., Kurcz, A. (2017). Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biol Rev, 31 (4), 185-198.
  • Krishan K. Selwal, Yueh-Fen Li & Zhongtang Yu (2017) Functional display of amylase on yeast surface from Rhizopus oryzae as a novel enzyme delivery method. Food Biotechnol, 31:4, 233-244, DOI: 10.1080/08905436.2017.1369098.
  • Ksonzeková P, Bystrickyb P, Vlckováb S, Pätoprst´yb, V, Pulzováa L, Mudroˇnováa D, Kubaskováa T, Csanka T, Tkáciková L. 2016. Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr Polym, 141: 10-19.
  • Liu, J., Li, L., Zhou, L., Li, B. and Xu, Z. (2017). Effect of ultrasound treatment conditions on Saccharomyces cerevisiae by response surface methodology. Microb Pathog, 111,497-502. Molon, M. and Zadrag-Tecza, R. (2016). Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae. Biogerontology, 17(2), 347-357.
  • Oğuz, Ş , Andiç, S . (2019). Peynir Üretiminde Kullanılan Starter Kültürler. Gıda, 44 (6), 1174-1196 . DOI: 10.15237/gida.GD19121.
  • Picon, A. (2018). Cheese Microbial Ecology and Safety. In: Global Cheesemaking Technology: Cheese Quality and Characteristics, Papademas, P., Bintsis, T. (Eds.), John Wiley & Sons Ltd, West Sussex, UK, pp. 71-99.
  • Piotr, J., Maria, W., Barbara, A., Jozafe, C., Adam, M., 2005. Diversity of physiological and biochemicial properties within yeast species occurring in rpkpol cheese. Pol. J. Food Nutr. Sci. 3:257-261.
  • Qun Wu, Jianchun Lin, Kaixiang Cui, Rubin Du, Yang Zhu, and Yan Xu. (2017). Effect of microbial ınteraction on urea metabolism in chinese liquor fermentation. J Agric Food Chem, 65 (50), 11133-11139 DOI: 10.1021/acs.jafc.7b04099.
  • Ray, M. K., Devi, U., Kumar, S, 1992. Extracellular protease from the antarctic yeast Candida humicola. Cent Cell Mol Bio, 58:6, 1918-1923. 0099-2240/92/061918.
  • Rossouw D, Bauer FF. (2016) Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol, 55:32–46.
  • Russo, P.; Fares, C.; Longo, A.; Spano, G.; Capozzi, V. (2017). Lactobacillus plantarum with broad antifungal activity as a protective starter culture for bread production. Food, 6 (12), 110, DOI: 10.3390/foods6120110.
  • Soran, G. Ş., Çelik, Ş. (2018). Telemesi Haşlanan Geleneksel Peynirlerimizin Üretimine Uygun Doğal Starter Kültür Geliştirilmesi. HU. Müh. Derg., 3(1): 15-19.
  • Soyoung Kim, Honk Kim and Hee jeong Chae, 2004. Selection of probiotic yeasts from soil, characterization and application for feed additives. Agric. Chem Biotechnol. 47(1), 20-26.
  • Suzzi, G., Lanorte, M.T., Galagno,F., Andrighetto,C., Lombardi,A., Lanciotti,R. and Guerzoni, M.E., (2001). Proteolytic, lipolytic and molecular characterization of Yarrowia lipolytica ısolated from cheese, Int J Food Microbiol, (69):69-77.
  • Tekinşen, OC., (2000). Süt Ürünleri Teknolojisi. Selçuk Üniv Basımevi, Konya.
  • Wyder, M.T., (2001). Yeasts in Dairy Products, Swiss Federal Dairy Research Station, Fam Info No: 425, Liebefeld, CH-3003 Berne.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Dilek Uzundağ 0000-0002-6256-574X

Yayımlanma Tarihi 19 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Uzundağ, D. (2020). BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI. Gıda, 45(5), 872-880. https://doi.org/10.15237/gida.GD20076
AMA Uzundağ D. BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI. GIDA. Ağustos 2020;45(5):872-880. doi:10.15237/gida.GD20076
Chicago Uzundağ, Dilek. “BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI”. Gıda 45, sy. 5 (Ağustos 2020): 872-80. https://doi.org/10.15237/gida.GD20076.
EndNote Uzundağ D (01 Ağustos 2020) BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI. Gıda 45 5 872–880.
IEEE D. Uzundağ, “BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI”, GIDA, c. 45, sy. 5, ss. 872–880, 2020, doi: 10.15237/gida.GD20076.
ISNAD Uzundağ, Dilek. “BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI”. Gıda 45/5 (Ağustos 2020), 872-880. https://doi.org/10.15237/gida.GD20076.
JAMA Uzundağ D. BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI. GIDA. 2020;45:872–880.
MLA Uzundağ, Dilek. “BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI”. Gıda, c. 45, sy. 5, 2020, ss. 872-80, doi:10.15237/gida.GD20076.
Vancouver Uzundağ D. BEYAZ PEYNİRDEN İZOLE EDİLEN CRYPTOCOCCUS HUMICOLA SUŞLARININ STARTER AKTİVİTELERİNİN ARAŞTIRILMASI. GIDA. 2020;45(5):872-80.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/