Derleme
BibTex RIS Kaynak Göster

OLEOGELS AND THEIR UTILIZATION IN EMULSIFIED MEAT PRODUCTS

Yıl 2017, Cilt: 42 Sayı: 5, 505 - 513, 19.06.2017

Öz

In recent years,
fat reduction strategies have been developed to prevent the health risks
related to high fat content of foods. Oleogelation is one of the current
techniques applied for that purpose in which the saturated fat and trans fat
amounts is reduced in foods. Oleogel is defined as a three dimensional,
continue and thermoreversible gel which is formed by crystallization of
oleogelator with low molecular weight into the vegetable fats. Previous studies
demonstrated that oleogels have been recently used in chocolate, margarine,
bakery products, dairy products and emulsified meat products. Researchers have
been showed that the unsaturated fat content as well as the sensory and
technological quality were increased and 
texture were improved by the use of oleogels instead of animal fats or
partial replacement of animal fats by oleogels in emulsified meat products. In
this study, organogelation technigue, formation and impact mechanism of
organogelation/oleogelation, oleogel technique application areas, compounds
which are used in oleogel preparation and the effects of oleogels on the
quality properties of emulsified meat products were reviewed.

Kaynakça

  • Barbut, S., Wood, J., Marangoni, A.G. (2016a). Potential use of organogels to replace animal fat in comminuted meat products. Meat Sci, 122: 155-162.
  • Barbut, S., Wood, J., Marangoni, A.G. (2016b). Quality effects of using organogels in breakfast sausage. Meat Sci, 122: 84-89.
  • Barbut, S., Wood, J., Marangoni, A.G. (2016c). Effects of organogel hardness and formulation on acceptance of frankfurters. J Food Sci, 81(9): 2183-2188.
  • Bemer, H.L., Limbaugh, M., Cramer, E.D., Harper, W.J., Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Res Int, 85: 67-75.
  • Berasategi, I., Garcia-Iniguez de Ciriano, M., Navarro-Blasco, I., Calvo, M.I., Cavero, R.Y., Astiasaran, I., Ansorena, D. (2014). Reduced-fat Bologna sausages with improved lipid fraction. J Sci Food Agric, 94: 744-751.
  • Bloukas, J.G., Paneras, E.D., Fournitzis, G.C. (1997). Effect of replacing pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Sci, 45(2): 133-144.
  • Burkhardt, M., Laurence, N., Gradzielski, M. (2016). Organogels based on 12 – hydroxy stearic acid as leitmotif: Dependence of gelation on chemical modifications. J Col Int Sci, 466: 369-376.
  • Candoğan, K., Kolsarıcı, N. (2003). The effects of carrageenan and pectin on some quality characteristics of low-fat beef frankfurters. Meat Sci, 64: 199-206.
  • Chung, C., Degner, B., McClements, D.J. (2013). Designing reduced-fat food emulsions: Locust bean gum- fat droplet interactions. Food Hydrocoll, 32: 263-270.
  • Co, E.D., Marangoni, A.G. (2012). Organogels: An alternative edible oil-structuring method. J Am Oil Chem Soc, 89: 749-780.
  • Del Nobile, M.A., Conte, A., Incoronato, A.L., Panza, O., Sevi, A., Marino, R. (2009). New strategies for reducing the pork back-fat content in typical Italian salami. Meat Sci, 81: 263-269.
  • Demirkesen, İ. (2017). Rheological and textural characteristics of oleogels formed by different waxes. Gıda, 42(1): 50-57.
  • Duffy, N., Blonk, H.C.G., Beindorff, C.M., Cazade, M., Bot, A., Duchateau, G.S.M.J.E. (2009). Organogel- based emulsion systems, microstructural features and impact on in vitro design. J Am Oil Chem Soc, 86: 733-741.
  • Grasso, S., Brunton, N.P., Lyng, J.G., Lalor, F., Monahan F.J. (2014). Healthy processed meat products-Regulatory, reformulation and consumer challenges. Trends Food Sci Technol, 39: 4-17.
  • Gravelle, A.J., Barbut, S., Marangoni, A.G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Res Int, 48: 578-583.
  • Han, L., Lin, L., Bing, L., Zhao, L., Liu, G., Liu, X., Wang, X. (2014). Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. J Am Oil Chem Soc, 91: 1783-1792.
  • Herrero, A.M., Carmona, P., Jimenez-Colmenero, F., Ruiz-Capillas, C. (2014). Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocoll, 36: 374-381.
  • Herrero, A.M., Carmona, P., Pintado, T., Jimenez-Colmenero, F., Ruiz-Capillas, C. (2012). Lipid and protein structure analysis of frankfurters formulated with olive oil-in-water emulsion as animal fat replacer. Food Chem, 135: 133-139.
  • Hughes, N.E., Marangoni, A.G., Wright, A.J., Rogers, M.A., Rush, J.W.E. (2009). Potential food applications of edible oil organogels. Trends Food Sci Technol, 20: 470-480.
  • Jiménez Colmenero, F. (2000). Relevant factors in strategies for fat reduction in meat products. Trends Food Sci Tech, 11: 56-66.
  • Jiménez Colmenero, F., Sandoval, L.S., Bou, R., Cofrades, S., Herrero, A.M., Ruiz-Capillas, C. (2015). Novel applications of oil structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci Technol, 44: 177-188.
  • Lopez-Martinez, A., Charó-Alonso, M.A., Marangoni, A.G., Toro-Vazquez, J.F. (2015). Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res Int, 72: 37-46.
  • Lupi, F.R., Gabriele, D., Greco, V., Baldino, N., Seta, L., Cindio, B. (2013). A rheological characterisation of an olive oil/fatty alcohols organogel. Food Res Int, 51: 510-517.
  • Lupi, F.R., Gabriele, D., Facciolo, D., Baldino, N., Seta, L., Cindio, B. (2012). Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Res Int, 46: 177-184.
  • Lupi, F.R., Gabriele, D., Cindio, B. (2011). Effect of shear rate on crystallisation phenomena in olive oil based organogels. Food Bioprocess Technol, 11(2): 0619.
  • Mert, B., Demirkesen, I. (2016). Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem, 199: 809-816.
  • Moschakis, T., Panagiotopoulou, E., Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part I) : Microstructure and mechanical properties. Food Sci Technol, 73: 153-161.
  • Olmedilla-Alonso, B., Jimenez-Colmenero, F., Sanchez-Muniz, F.J. (2013). Development and assessment of healthy properties of meat an meat products designed as functional foods. Meat Sci, 95: 919-930.
  • O'Sullivan, C.M., Barbut, S., Marangoni, A.G. (2016). Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci Technol, 57: 59-73.
  • Öğütcü, M., Yılmaz, E. (2012). Margarinlere Alternatif Olabilecek Yeni Bir Ürün: Oleojeller-I. Dünya Gıda, 01: 68-73.
  • Panagiotopoulou, E., Moschakis, T., Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part II) : Implementation in frankfurter sausages. Food Sci Technol, 73: 351-356.
  • Paneras, E.D., Bloukas, J.G. (1994). Vegetable oils replace pork backfat for low-fat frankfurters. J Food Sci, 59(4): 725-728.
  • Patel, A.R., Dewettinck, K. (2016). Edible oil structuring: An overview and recent updates. Food Funct, 7: 20-29.
  • Patel, A.R., Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Euro J Lipid Sci Technol, 117(11): 1772-1781.
  • Patel, A.R., Cludts, N., Sintang, M.D.B., Lesaffer, A., Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct, 5(11): 2833-2841.
  • Pernetti, M., Malssen, K., Kalnin, D., Flöter, E., Bot A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Curr OpinColl Int Sci, 12: 221-231.
  • Pernetti, M., Malssen, K., Kalnin, D., Flöter, E. (2007b). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocoll, 21: 855-861.
  • Pieve, S., Calligaris, S., Co, E., Nicoli, M.C., Marangoni, A.G. (2010). Shear Nanostructuring of monoglyceride organogels. Food Biophys, 5: 211-217.
  • Poyato, C., Astiasaran, I., Barriuso, B., Ansorena, D. (2015). A new polyunsaturated gelled emulsion as replacer of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and sensory acceptability. Food Sci Technol, 62: 1069-1075.
  • Poyato, C., Ansorena, D., Berasategi, I., Navarro-Blasco, I., Astiasaran, I. (2014). Optimization of a gelled emulsion intended to supply ω -3 fatty acids into meat products by means of response surface methodology. Meat Sci, 98: 615-621.
  • Rogers, M.A., Wright, A.J., Marangoni, A.G. (2009a). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels. CurrOpin CollInt Sci, 14: 33-42.
  • Rogers, M.A. (2009b). Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review. Food Res Int, 42: 747-753.
  • Shapiro, Y.E. (2011). Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach. Prog Polym Sci, 36: 1184-1253.
  • Stortz, T., Zetzl, A., Barbut, S., Cattaruzza, A., Marangoni, A.G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol, 24(7): 151-154.
  • Toro-Vazquez, J.F., Mauricio-Perez, R., Gonzalez-Chavez, M.M., Sanchez-Becerril, M., Ornelas-Paz, J.J., Perez-Martinez, J.D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Res Int, 54: 1360-1368.
  • Triki, M., Herrero, A.M., Rodriguez-Salas, L., Jimenez-Colmenero, F., Ruiz-Capillas, C. (2013). Chilled storage characteristics of low-fat, n-3 PUFA – enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 31(1): 158-165.
  • Utrilla, M.C., Ruiz, A.G., Soriano, A. (2014). Effect of partial replacement of pork meat with an olive oil organogel on the physicochemical and sensory quality of dry-ripened. Meat Sci, 97: 575-582.
  • Wassell, P., Bonwick, G., Smith, C.J., Almiron-Roig, E., Young, N.W.G. (2010). Towards a multidisciplinary approach to structuring in reduced saturated fat-based systems- a review. Food Sci Technol, 45: 642-655.
  • Yılmaz, E., Öğütcü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct, 6(4): 1194-1204.
  • Youssef, M.K., Barbut, S. (2011). Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Sci, 87: 356-360.
  • Youssef, M.K., Barbut, S. (2009). Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters. Meat Sci, 82: 228-233.
  • Zetzl, A.K., Gravelle, A.J., Kurylowicz, M., Dutcher, J., Barbut, S., Marangoni, A.G. (2014). Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct, 2(1): 27-40.
  • Zetzl, A.K., Marangoni, A.G., Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct, 3: 327.
  • Zulim Botega, D.C., Marangoni, A.G., Smith, A.K., Goff, H.D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. J Food Sci, 78(9): 1334-1339.

OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI

Yıl 2017, Cilt: 42 Sayı: 5, 505 - 513, 19.06.2017

Öz

Son yıllarda,
gıdaların yüksek yağ içeriği ile ilişkili olan sağlık problemlerinin önlenmesi
için yağ azaltma stratejileri geliştirilmektedir. Oleojelasyon bu amaçla
uygulanan ve gıdalarda doymuş yağ ile trans yağ miktarını azaltmak amacıyla
kullanılan güncel tekniklerden biridir. Oleojel, tüketilebilir bir bitkisel yağ
içerisinde düşük molekül ağırlığına sahip bir jel ajanın kristalleşerek
oluşturduğu üç boyutlu, sürekli ve termo dönüşümlü jel formu olarak tanımlanır.
Yapılan çalışmalar oleojellerin unlu mamuller, çikolata, margarin ve emülsifiye
et ürünlerinde kullanılabildiğini göstermiştir. Araştırmacılar, emülsifiye et
ürünlerinde hayvansal yağ yerine oleojel kullanımının ya da oleojelin belirli
oranlarda hayvansal yağ ile ikamesinin, et ürünlerinde doymamış yağ asidi
içeriğiyle birlikte duyusal ve teknolojik kaliteyi arttırdığını, tekstürü
iyileştirdiğini belirtmişlerdir. Bu çalışmada, organojelasyon tekniği,
organojel/oleojel oluşum ve etki mekanizması, oleojel uygulama alanları,
oleojel hazırlamada kullanılan bileşenler ve farklı oleojellerin emülsifiye et
ürünlerinde kullanımının ürün özellikleri üzerine etkisi yapılan araştırmalara
dayanılarak derlenmiştir.

Kaynakça

  • Barbut, S., Wood, J., Marangoni, A.G. (2016a). Potential use of organogels to replace animal fat in comminuted meat products. Meat Sci, 122: 155-162.
  • Barbut, S., Wood, J., Marangoni, A.G. (2016b). Quality effects of using organogels in breakfast sausage. Meat Sci, 122: 84-89.
  • Barbut, S., Wood, J., Marangoni, A.G. (2016c). Effects of organogel hardness and formulation on acceptance of frankfurters. J Food Sci, 81(9): 2183-2188.
  • Bemer, H.L., Limbaugh, M., Cramer, E.D., Harper, W.J., Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Res Int, 85: 67-75.
  • Berasategi, I., Garcia-Iniguez de Ciriano, M., Navarro-Blasco, I., Calvo, M.I., Cavero, R.Y., Astiasaran, I., Ansorena, D. (2014). Reduced-fat Bologna sausages with improved lipid fraction. J Sci Food Agric, 94: 744-751.
  • Bloukas, J.G., Paneras, E.D., Fournitzis, G.C. (1997). Effect of replacing pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Sci, 45(2): 133-144.
  • Burkhardt, M., Laurence, N., Gradzielski, M. (2016). Organogels based on 12 – hydroxy stearic acid as leitmotif: Dependence of gelation on chemical modifications. J Col Int Sci, 466: 369-376.
  • Candoğan, K., Kolsarıcı, N. (2003). The effects of carrageenan and pectin on some quality characteristics of low-fat beef frankfurters. Meat Sci, 64: 199-206.
  • Chung, C., Degner, B., McClements, D.J. (2013). Designing reduced-fat food emulsions: Locust bean gum- fat droplet interactions. Food Hydrocoll, 32: 263-270.
  • Co, E.D., Marangoni, A.G. (2012). Organogels: An alternative edible oil-structuring method. J Am Oil Chem Soc, 89: 749-780.
  • Del Nobile, M.A., Conte, A., Incoronato, A.L., Panza, O., Sevi, A., Marino, R. (2009). New strategies for reducing the pork back-fat content in typical Italian salami. Meat Sci, 81: 263-269.
  • Demirkesen, İ. (2017). Rheological and textural characteristics of oleogels formed by different waxes. Gıda, 42(1): 50-57.
  • Duffy, N., Blonk, H.C.G., Beindorff, C.M., Cazade, M., Bot, A., Duchateau, G.S.M.J.E. (2009). Organogel- based emulsion systems, microstructural features and impact on in vitro design. J Am Oil Chem Soc, 86: 733-741.
  • Grasso, S., Brunton, N.P., Lyng, J.G., Lalor, F., Monahan F.J. (2014). Healthy processed meat products-Regulatory, reformulation and consumer challenges. Trends Food Sci Technol, 39: 4-17.
  • Gravelle, A.J., Barbut, S., Marangoni, A.G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Res Int, 48: 578-583.
  • Han, L., Lin, L., Bing, L., Zhao, L., Liu, G., Liu, X., Wang, X. (2014). Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. J Am Oil Chem Soc, 91: 1783-1792.
  • Herrero, A.M., Carmona, P., Jimenez-Colmenero, F., Ruiz-Capillas, C. (2014). Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocoll, 36: 374-381.
  • Herrero, A.M., Carmona, P., Pintado, T., Jimenez-Colmenero, F., Ruiz-Capillas, C. (2012). Lipid and protein structure analysis of frankfurters formulated with olive oil-in-water emulsion as animal fat replacer. Food Chem, 135: 133-139.
  • Hughes, N.E., Marangoni, A.G., Wright, A.J., Rogers, M.A., Rush, J.W.E. (2009). Potential food applications of edible oil organogels. Trends Food Sci Technol, 20: 470-480.
  • Jiménez Colmenero, F. (2000). Relevant factors in strategies for fat reduction in meat products. Trends Food Sci Tech, 11: 56-66.
  • Jiménez Colmenero, F., Sandoval, L.S., Bou, R., Cofrades, S., Herrero, A.M., Ruiz-Capillas, C. (2015). Novel applications of oil structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci Technol, 44: 177-188.
  • Lopez-Martinez, A., Charó-Alonso, M.A., Marangoni, A.G., Toro-Vazquez, J.F. (2015). Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res Int, 72: 37-46.
  • Lupi, F.R., Gabriele, D., Greco, V., Baldino, N., Seta, L., Cindio, B. (2013). A rheological characterisation of an olive oil/fatty alcohols organogel. Food Res Int, 51: 510-517.
  • Lupi, F.R., Gabriele, D., Facciolo, D., Baldino, N., Seta, L., Cindio, B. (2012). Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Res Int, 46: 177-184.
  • Lupi, F.R., Gabriele, D., Cindio, B. (2011). Effect of shear rate on crystallisation phenomena in olive oil based organogels. Food Bioprocess Technol, 11(2): 0619.
  • Mert, B., Demirkesen, I. (2016). Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem, 199: 809-816.
  • Moschakis, T., Panagiotopoulou, E., Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part I) : Microstructure and mechanical properties. Food Sci Technol, 73: 153-161.
  • Olmedilla-Alonso, B., Jimenez-Colmenero, F., Sanchez-Muniz, F.J. (2013). Development and assessment of healthy properties of meat an meat products designed as functional foods. Meat Sci, 95: 919-930.
  • O'Sullivan, C.M., Barbut, S., Marangoni, A.G. (2016). Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci Technol, 57: 59-73.
  • Öğütcü, M., Yılmaz, E. (2012). Margarinlere Alternatif Olabilecek Yeni Bir Ürün: Oleojeller-I. Dünya Gıda, 01: 68-73.
  • Panagiotopoulou, E., Moschakis, T., Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part II) : Implementation in frankfurter sausages. Food Sci Technol, 73: 351-356.
  • Paneras, E.D., Bloukas, J.G. (1994). Vegetable oils replace pork backfat for low-fat frankfurters. J Food Sci, 59(4): 725-728.
  • Patel, A.R., Dewettinck, K. (2016). Edible oil structuring: An overview and recent updates. Food Funct, 7: 20-29.
  • Patel, A.R., Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Euro J Lipid Sci Technol, 117(11): 1772-1781.
  • Patel, A.R., Cludts, N., Sintang, M.D.B., Lesaffer, A., Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct, 5(11): 2833-2841.
  • Pernetti, M., Malssen, K., Kalnin, D., Flöter, E., Bot A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Curr OpinColl Int Sci, 12: 221-231.
  • Pernetti, M., Malssen, K., Kalnin, D., Flöter, E. (2007b). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocoll, 21: 855-861.
  • Pieve, S., Calligaris, S., Co, E., Nicoli, M.C., Marangoni, A.G. (2010). Shear Nanostructuring of monoglyceride organogels. Food Biophys, 5: 211-217.
  • Poyato, C., Astiasaran, I., Barriuso, B., Ansorena, D. (2015). A new polyunsaturated gelled emulsion as replacer of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and sensory acceptability. Food Sci Technol, 62: 1069-1075.
  • Poyato, C., Ansorena, D., Berasategi, I., Navarro-Blasco, I., Astiasaran, I. (2014). Optimization of a gelled emulsion intended to supply ω -3 fatty acids into meat products by means of response surface methodology. Meat Sci, 98: 615-621.
  • Rogers, M.A., Wright, A.J., Marangoni, A.G. (2009a). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels. CurrOpin CollInt Sci, 14: 33-42.
  • Rogers, M.A. (2009b). Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review. Food Res Int, 42: 747-753.
  • Shapiro, Y.E. (2011). Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach. Prog Polym Sci, 36: 1184-1253.
  • Stortz, T., Zetzl, A., Barbut, S., Cattaruzza, A., Marangoni, A.G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol, 24(7): 151-154.
  • Toro-Vazquez, J.F., Mauricio-Perez, R., Gonzalez-Chavez, M.M., Sanchez-Becerril, M., Ornelas-Paz, J.J., Perez-Martinez, J.D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Res Int, 54: 1360-1368.
  • Triki, M., Herrero, A.M., Rodriguez-Salas, L., Jimenez-Colmenero, F., Ruiz-Capillas, C. (2013). Chilled storage characteristics of low-fat, n-3 PUFA – enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 31(1): 158-165.
  • Utrilla, M.C., Ruiz, A.G., Soriano, A. (2014). Effect of partial replacement of pork meat with an olive oil organogel on the physicochemical and sensory quality of dry-ripened. Meat Sci, 97: 575-582.
  • Wassell, P., Bonwick, G., Smith, C.J., Almiron-Roig, E., Young, N.W.G. (2010). Towards a multidisciplinary approach to structuring in reduced saturated fat-based systems- a review. Food Sci Technol, 45: 642-655.
  • Yılmaz, E., Öğütcü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct, 6(4): 1194-1204.
  • Youssef, M.K., Barbut, S. (2011). Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Sci, 87: 356-360.
  • Youssef, M.K., Barbut, S. (2009). Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters. Meat Sci, 82: 228-233.
  • Zetzl, A.K., Gravelle, A.J., Kurylowicz, M., Dutcher, J., Barbut, S., Marangoni, A.G. (2014). Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct, 2(1): 27-40.
  • Zetzl, A.K., Marangoni, A.G., Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct, 3: 327.
  • Zulim Botega, D.C., Marangoni, A.G., Smith, A.K., Goff, H.D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. J Food Sci, 78(9): 1334-1339.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Şeyma Yenioğlu Demiralp Bu kişi benim

Eda Demirok Soncu Bu kişi benim

Nuray Kolsarıcı Bu kişi benim

Yayımlanma Tarihi 19 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 42 Sayı: 5

Kaynak Göster

APA Yenioğlu Demiralp, Ş., Demirok Soncu, E., & Kolsarıcı, N. (2017). OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI. Gıda, 42(5), 505-513.
AMA Yenioğlu Demiralp Ş, Demirok Soncu E, Kolsarıcı N. OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI. GIDA. Ekim 2017;42(5):505-513.
Chicago Yenioğlu Demiralp, Şeyma, Eda Demirok Soncu, ve Nuray Kolsarıcı. “OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI”. Gıda 42, sy. 5 (Ekim 2017): 505-13.
EndNote Yenioğlu Demiralp Ş, Demirok Soncu E, Kolsarıcı N (01 Ekim 2017) OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI. Gıda 42 5 505–513.
IEEE Ş. Yenioğlu Demiralp, E. Demirok Soncu, ve N. Kolsarıcı, “OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI”, GIDA, c. 42, sy. 5, ss. 505–513, 2017.
ISNAD Yenioğlu Demiralp, Şeyma vd. “OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI”. Gıda 42/5 (Ekim 2017), 505-513.
JAMA Yenioğlu Demiralp Ş, Demirok Soncu E, Kolsarıcı N. OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI. GIDA. 2017;42:505–513.
MLA Yenioğlu Demiralp, Şeyma vd. “OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI”. Gıda, c. 42, sy. 5, 2017, ss. 505-13.
Vancouver Yenioğlu Demiralp Ş, Demirok Soncu E, Kolsarıcı N. OLEOJELLER VE EMÜLSİFİYE ET ÜRÜNLERİNDE KULLANIMI. GIDA. 2017;42(5):505-13.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/