KETEN TOHUMU FİLİZLERİNİN SDG LİGNAN, FENOLİK
ve FLAVONOİT İÇERİKLERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ
Yıl 2015,
Cilt: 40 Sayı: 5, 255 - 262, 01.10.2015
Evrim Özkaynak Kanmaz
Gülden Ova
Öz
Bu çalışmada, kahverengi ve sarı keten tohumlarının (Linum usitatissimum L.) ve filizlerinin SDG(sekoizolarikirezinol diglukosit) lignan, fenolik ve flavonoit içeriğine çimlendirme süresinin etkisiaraştırılmıştır. Kahverengi ve sarı keten tohumlarında SDG lignan miktarı sırasıyla 13.76 ve 6.17 mg/golmasına karşın çimlendirme işlemi tohumların SDG lignan içeriğinde önemli bir azalmaya nedenolmuştur. 13 günlük kahverengi keten tohumu filizleri en yüksek SDG lignan (0.72 mg/g) içeriğinesahipken sarı keten tohumu filizlerinde en yüksek SDG lignan 0.37 mg/g olarak 11. günde saptanmıştır.Keten tohumlarının yapısındaki serbest ve esterleşmiş fenolikler ve flavonoitler çimlendirme işlemindensonra ve 5-13 günlük çimlendirme süresince artmıştır ve kültürel çeşitlilik istatistiksel anlamda önemlibulunmuştur (P<0.05). Kahverengi ve sarı keten tohumlarının toplam fenolik içeriği 13 günlük çimlendirmeişleminden sonra sırasıyla 4.2 ve 7.3 kat artmış olup benzer şekilde toplam flavonoit içerikleri de 33.5ve 26.8 kat artmıştır. Keten tohumlarında esterleşmiş fenoliklerin oranı çimlendirme işlemi ile düşerek 5günlük kahverengi ve sarı keten tohumu filizlerinde toplam fenoliklerin %66.11 ve 67.02’sini oluşturduğusaptanmıştır. Buna karşın, tohumlardaki serbest flavonoitler çimlendirme işlemi ile artarak 13 günlükkahverengi ve sarı keten tohumu filizlerinde sırasıyla %77.35 ve 71.11 oranlarına ulaşmıştır
Kaynakça
- Johnsson P, Peerlkampa N, Kamal-Eldina A, Andersson RE, Anderssona R, Lundgren LN, Åman P. 2002. Polymeric fractions containing phenol glucosides in flaxseed. Food Chem, 76: 207-212.
- Meagher LP and Beecher GR. 2000. Assessment of data on the lignan content of foods. J Food Compos Anal, 13: 935-947.
- Rudnik E, Szczucinska A, Gwardiak H, Szulc A, Winiarska A. 2001. Comparative studies of oxidative stability of linseed oil. Thermochimica Acta, 370: 135-140.
- Oomah BD, Kenaschuk EO, Mazza G. 1995. Phenolic Acids in Flaxseed. J. Agric. Food Chem, 43: 2016-2019.
- Oomah B, Mazza G, Kenaschuk EO. 1996. Fla- vonoid content of flax seed. Influence of cultivar and environment. Euphytica, 90: 163-167.
- Collins TFX, Sprando RL, Black TN, Olejnik N, Wiesenfeld PW, Babu US, Bryant M, Flynn TJ, Ruggles DI.. 2003. Effects of flaxseed and defatted flaxseed meal on reproduction and development in rats. Food Chem Toxicol, 41: 819-834.
- Bloedon LT and Szapary OP. 2004. Flaxseed and cardiovascular risk. Nutr Rev. 62:18-27.
- Hosseinian FS, Muir AD, Westcott ND, Krol ES. 2006. Antioxidant Capacity of Flaxseed Lignans in Two Model Systems. JAOCS, 83 (10): 835-840.
- Valstal LM, Killkinen A, Mazur W, Nurmi T, Lampi AM, Ovaskainen ML, Korhonen T, Adlercreutz H, Pietinen P. 2003. Phyto-oestrogen database of foods and average intake in Finland. Br J Nutr, 89 (1): 31-38.
- Tan KP, Chen J, Ward WE, Thompson LU. 2004. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Exp Biol Med, 229: 147-157.
- Chen J, Thompson LU. 2003. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res Treat, 80: 163-170.
- Thompson LU. 2003. Flaxseed, Lignans, and Cancer. In S. C. Cunnane, & L. U. Thompson (Eds.), Flaxseed in human nutrition. AOCS Press, 195-222 p.
- Khattak AB, Zeb A, Bibi N, Khalil SA, Khattak MA. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem, 104 (3): 1074-1079.
- Plaz L, de Ancos B, Pilar Cano M. 2003. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. Eur Food Res Technol, 216: 138-144.
- Badshah A, Zeb A, Sattar A. 1991. Effect of soaking, germination and autoclaving on selected nutrients of rapeseed. Pak J Sci Ind Res, 34: 446-448. 16. Sattar A, Badshah A, Zeb A. 1995. Biosynthesis of ascorbic acid in germinating rapeseed cultivars. Plant Foods Hum Nutr, 47: 63-70.
- Khattak AB, Zeb A, Khan M, Bibi N, Ihsanullah Khattak MS. 2007. Influence of germination techniques on sprout yield, biosynthesis of ascorbic acid and cooking ability, in chickpea (Cicer arietinum L.). Food Chem, 103 (1): 115-120.
- Zanabria ER, Katarzyna N, De Jong LEQ, Birgit HBE, Robert MJN. 2006. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolics, phytate, iron and zinc. J Sci Food Agric, 86: 1391-1398.
- Mao JJ, Dong JF, Zhu MY. 2005. Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, 85, 943-947.
- Pasko P, Barton H, Zagrodzki, Gorinstein, S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 115: 994-998.
- ISTA. 1985. "Flax seed sprouts", International rules for seed testing. Seed Science and Technology. 22. AOAC. 1998. Official Methods of Analysis of the Association of Analytical Chemists, Washington D. C., USA.
- Özkaynak Kanmaz E, Ova G. 2013. The Ef- fective parameters for subcritical water extraction of SDG from flaxseed (Linum usitatissimum L.) using accelerated solvent extractor. Eur Food Res Technol, 237 (2): 159-166.
- Özkaynak Kanmaz E. 2014. Subcritical water extraction of phenolic compounds from flaxseed meal sticks using accelerated solvent extractor (ASE). Eur Food Res Technol, 238 (1): 85-91.
- Rouhi AM. 2000. Lignin and lignan biosynthesis. Chemical & Engineering News, Science/technology, 78 (46): 29-32.
- Hahm TS, Park SJ, Lo YM. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol, 100: 1643–1647.
- Fernández-Orozco R, Piskula MK, Zielinski H, Kozlowska H, Frias J, Vidal- Valverde C. 2006. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur Food Res Technol, 223: 495-502.
- Lin PY, Lai HM. 2006. Bioactive compounds in legumes and their germinated products. J Agric Food Chem, 54: 3807-3814.
- Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem, 119: 770-778.
- Pérez-Balibrea S, Moreno DA, García-Viguera C. 2011. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem, 125: 348-354.
- Kim EH, Kim SH, Chung JI, Chi JH, Kim YA, Chung IM. 2004. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol, 222: 201-208. 32. Lee SJ, Ahn JK, Kahnh TD, Chun SC, Kim SL, Ro HM, Song HK, Chung IM. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. J Agric Food Chem, 55: 9415-9421.
THE INFLUENCE of GERMINATION TIME on SDG LIGNAN,
PHENOLIC and FLAVONOID CONTENTS of FLAXSEED
(LINUM USITATISSIMUM L.) SPROUTS
Yıl 2015,
Cilt: 40 Sayı: 5, 255 - 262, 01.10.2015
Evrim Özkaynak Kanmaz
Gülden Ova
Öz
In this study, the effect of germination time on SDG (secoisolariciresinol diglucoside) lignan, phenolicand flavonoid contents of brown and yellow flaxseeds (Linum usitatissimum L.) and their sprouts wasinvestigated. SDG lignan content of brown and yellow flaxseeds were obtained as 13.76 and 6.17 mg/g dwrespectively whereas, germination resulted in a noticable reduction of SDG lignan in seeds. 13-old-daybrown flaxseed sprouts had the highest SDG lignan content (0.72 mg/g dw) whereas, the highest SDGlignan content was determined as 0.37 mg/g in yellow flaxseed sprouts at 11 days. Free and esterifiedphenolics and flavonoids were increased after with germination and during germination (5-13 days)and cultivar had a significant effect (P<0.05). Total phenolic content of brown and yellow flaxseedsincreased 4.2-fold and 7.3-fold after germination of 13 days respectively, similarly total flavonoid contentincreased 33.5-fold and 26.8-fold. The percentage of esterified phenolics decreased with germinationin seeds and represented 66.11 and 67.02% of total phenolics in brown and yellow flaxseed sprouts at5 days whereas, the percentage of free flavonoids in seeds increased with germination and reached to77.35 and 71.11% in brown and yellow flaxseed sprouts respectively
Kaynakça
- Johnsson P, Peerlkampa N, Kamal-Eldina A, Andersson RE, Anderssona R, Lundgren LN, Åman P. 2002. Polymeric fractions containing phenol glucosides in flaxseed. Food Chem, 76: 207-212.
- Meagher LP and Beecher GR. 2000. Assessment of data on the lignan content of foods. J Food Compos Anal, 13: 935-947.
- Rudnik E, Szczucinska A, Gwardiak H, Szulc A, Winiarska A. 2001. Comparative studies of oxidative stability of linseed oil. Thermochimica Acta, 370: 135-140.
- Oomah BD, Kenaschuk EO, Mazza G. 1995. Phenolic Acids in Flaxseed. J. Agric. Food Chem, 43: 2016-2019.
- Oomah B, Mazza G, Kenaschuk EO. 1996. Fla- vonoid content of flax seed. Influence of cultivar and environment. Euphytica, 90: 163-167.
- Collins TFX, Sprando RL, Black TN, Olejnik N, Wiesenfeld PW, Babu US, Bryant M, Flynn TJ, Ruggles DI.. 2003. Effects of flaxseed and defatted flaxseed meal on reproduction and development in rats. Food Chem Toxicol, 41: 819-834.
- Bloedon LT and Szapary OP. 2004. Flaxseed and cardiovascular risk. Nutr Rev. 62:18-27.
- Hosseinian FS, Muir AD, Westcott ND, Krol ES. 2006. Antioxidant Capacity of Flaxseed Lignans in Two Model Systems. JAOCS, 83 (10): 835-840.
- Valstal LM, Killkinen A, Mazur W, Nurmi T, Lampi AM, Ovaskainen ML, Korhonen T, Adlercreutz H, Pietinen P. 2003. Phyto-oestrogen database of foods and average intake in Finland. Br J Nutr, 89 (1): 31-38.
- Tan KP, Chen J, Ward WE, Thompson LU. 2004. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Exp Biol Med, 229: 147-157.
- Chen J, Thompson LU. 2003. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res Treat, 80: 163-170.
- Thompson LU. 2003. Flaxseed, Lignans, and Cancer. In S. C. Cunnane, & L. U. Thompson (Eds.), Flaxseed in human nutrition. AOCS Press, 195-222 p.
- Khattak AB, Zeb A, Bibi N, Khalil SA, Khattak MA. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem, 104 (3): 1074-1079.
- Plaz L, de Ancos B, Pilar Cano M. 2003. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. Eur Food Res Technol, 216: 138-144.
- Badshah A, Zeb A, Sattar A. 1991. Effect of soaking, germination and autoclaving on selected nutrients of rapeseed. Pak J Sci Ind Res, 34: 446-448. 16. Sattar A, Badshah A, Zeb A. 1995. Biosynthesis of ascorbic acid in germinating rapeseed cultivars. Plant Foods Hum Nutr, 47: 63-70.
- Khattak AB, Zeb A, Khan M, Bibi N, Ihsanullah Khattak MS. 2007. Influence of germination techniques on sprout yield, biosynthesis of ascorbic acid and cooking ability, in chickpea (Cicer arietinum L.). Food Chem, 103 (1): 115-120.
- Zanabria ER, Katarzyna N, De Jong LEQ, Birgit HBE, Robert MJN. 2006. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolics, phytate, iron and zinc. J Sci Food Agric, 86: 1391-1398.
- Mao JJ, Dong JF, Zhu MY. 2005. Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, 85, 943-947.
- Pasko P, Barton H, Zagrodzki, Gorinstein, S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 115: 994-998.
- ISTA. 1985. "Flax seed sprouts", International rules for seed testing. Seed Science and Technology. 22. AOAC. 1998. Official Methods of Analysis of the Association of Analytical Chemists, Washington D. C., USA.
- Özkaynak Kanmaz E, Ova G. 2013. The Ef- fective parameters for subcritical water extraction of SDG from flaxseed (Linum usitatissimum L.) using accelerated solvent extractor. Eur Food Res Technol, 237 (2): 159-166.
- Özkaynak Kanmaz E. 2014. Subcritical water extraction of phenolic compounds from flaxseed meal sticks using accelerated solvent extractor (ASE). Eur Food Res Technol, 238 (1): 85-91.
- Rouhi AM. 2000. Lignin and lignan biosynthesis. Chemical & Engineering News, Science/technology, 78 (46): 29-32.
- Hahm TS, Park SJ, Lo YM. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol, 100: 1643–1647.
- Fernández-Orozco R, Piskula MK, Zielinski H, Kozlowska H, Frias J, Vidal- Valverde C. 2006. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur Food Res Technol, 223: 495-502.
- Lin PY, Lai HM. 2006. Bioactive compounds in legumes and their germinated products. J Agric Food Chem, 54: 3807-3814.
- Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem, 119: 770-778.
- Pérez-Balibrea S, Moreno DA, García-Viguera C. 2011. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem, 125: 348-354.
- Kim EH, Kim SH, Chung JI, Chi JH, Kim YA, Chung IM. 2004. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol, 222: 201-208. 32. Lee SJ, Ahn JK, Kahnh TD, Chun SC, Kim SL, Ro HM, Song HK, Chung IM. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. J Agric Food Chem, 55: 9415-9421.