BibTex RIS Kaynak Göster

MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ

Yıl 2016, Cilt: 41 Sayı: 6, 427 - 434, 01.12.2016

Öz

Mikroorganizmalar bulundukları çevresel koşullar içerisinde ısı, oksijen, asit, safra tuzu ve ozmotikstres gibi çeşitli stres faktörlerine maruz kalmaktadır. Mikroorganizmalar, stres ile karşılaştıklarında canlıkalabilir ve/veya gelişmek için çeşitli fizyolojik adaptasyonlar geçirerek ortam koşullarına adapte olabilirler.Stres yanıt sistemi, mikroorganizmanın çeşidine, uygulanan stresin şiddetine ve mikroorganizmanın bustrese adapte edilip edilmediğine göre değişmektedir. Mikroorganizmaların olumsuz koşullara adaptasyonu,saprofitlerin ve gıda kaynaklı patojenlerin inaktivasyonunda bir sorun olarak ortaya çıkmaktadır. Gıdagüvenliği ve ürünlerin raf ömrü süresi düşünülünce patojenlerin bu özelliklerinin göz ardı edilmemesigerekmektedir. Probiyotik mikroorganizmalarda olduğu gibi yüksek canlılık oranının istendiği ve patojenmikroorganizmaların ortamdan elimine edilmesinin söz konusu olduğu durumlarda adaptasyon veyatolerans geliştirme üzerinde önemle durulması gereken bir konudur. Bu derleme çalışmasında; ısı, ışık,ozmotik stres ve oksidatif stres gibi başlıca stres faktörlerinin mikroorganizmalar üzerine etkisi,mikroorganizmaların bu stres koşullarındaki adaptasyon durumları ve adaptasyon geliştirme mekanizmalarıincelenmiştir

Kaynakça

  • Dikici A. 2009. Çevresel Stres Faktörlerine Karşı Bakteriyel Adaptasyonlar ve Mekanizmaları. Gıda Teknolojileri Elektronik Dergisi, 4 (3): 59-68.
  • Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecological Society of America Annual Meeting Abstracts, 88 (6): 1386-1394.
  • Russell NJ, Evans RI, Steeg PF, Hellemons J, Verheul A, Abee T. 1995. Membranes as a target for stress adaptation. International Journal of Food Microbiology, 28: 255-261.
  • Sorensen JG, Kristensen TN, Loeschcke V. 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6: 1025-1037.
  • Aksöz N. 1985. Halofilik Bakteriler. Mikrobiyoloji Bülteni, 19: 161-167.
  • Yousef AE, Courtney PD. 2003. Basics of stres adaptation and implications in new generation foods. Microbial Stres Adaptation and Food Safety. (Editor: AE Yousef and VK Juneja). CRC Pres, New York. Syf:1–25.
  • Hill C, O’Driscoll B, Booth I. 1995. Acid adaptation and food poisoning microorganisms. International Journal of Food Microbiology, 25: 245-254.
  • Öztürk FY. 2010. Asit ve Tuza Adapte Edilmiş Escherichia coli
  • monocytogenes’in Türk Sucuklarında Yaşama Düzeylerinin Belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Ankara, Türkiye, 132 s.
  • Velliou EG, Derlinden EV, Cappuyns AM, Goossens J, Geeraerd AH, Devlieghere F, Van Impe JF. 2011. Heat adaptation of Escherichia coli K12: effect of acid and glucose. Procedia Food Science, 1: 987-993.
  • O157:H7 ve Listeria 10. Isohanni P, Huehn S, Aho T, Alter T, Lyhs U. 2013. Heat stress adaptation induces cross-protection against lethal acid stress conditions in Arcobacter butzleri but not in Campylobacter jenuni. Food Microbiology, 34: 431-435.
  • Oger PM, Cario A. 2013. Adaptation of the membrane in Archaea. Biophysical Chemistry, 183: 42-56.
  • Ordóñez AA, Broussolle V, Colin P, Nguyen- The C, Prieto M. 2015. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. International Journal of Food Microbiology, 213: 99-109.
  • Chowdhury R, Sahu GK, Das J. 1996. Stress response in pathogenic bacteria. Journal Biosciences, 21 (2): 149-160.
  • Requana JM (ed). 2012. Stress Response in Microbiology. Caister Academic Press, Madrid, Spain, 436 p.
  • Dahlsten E, Lindström M, Korkeala H. 2015. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum. Research in Microbiology, 166: 344-352.
  • Ergin F, Çomak Göçer EM, Aşçı Arslan A, Küçükçetin A. 2012. Probiyotik Bakterilerin Düşük Sıcaklık Stresine Adaptasyonu. Akademik Gıda, 10: 65-69.
  • Moat AG, Foster JW, Spector MP. 2002. Microbial Stress Responses. In: Microbial Physiology, Fourth Edition, John Wiley & Sons, Inc., USA, s 582- 611. 18. Verghese J, Abrams J, Wang Y, Morano KA. 2012. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiology and Molecular Biology Reviews, 76 (2): 115-158.
  • Phadtare S, Inouye M. 2008. Cold-Shock Proteins. Psychrophiles: from Biodiversity to Biotechnology, Margesin R (chief ed), Springer, Heidelberg, Germany, p. 191-205.
  • Panoff JM, Corroler D, Thammavongs B, Boutibonnes O. 1997. Differentiation between Cold Shock Proteins and Cold Acclimation Proteins in a Mesophilic Gram-Positive Bacterium Enterococcus faecalis JH2-2. Journal of Bacteriology, 179 (13): 4451-4454.
  • Aşkar TK, Ergün N, Turunç V. 2007. Isı Şok Proteinler ve Fizyolojik Rolleri. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 13 (1): 109-114.
  • Guzzo J. 2012. Biotechnical applications of small heat shock proteins from bacteria. The International Journal of Biochemistry & Cell Biology, 44: 1698-1705.
  • Kiang JG, Tsokos GC. 1998. Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry and Physiology. Pharmacology & Therapeutics, 80 (2): 183-201.
  • Moseley PL. 1997. Heat shock proteins and heat adaptation of the whole organism whole organism. Journal of Applied Physiology. 83 (5): 1413-1417. 25. Voisine C, Pedersen JS, Morimoto RI. 2010. Chaperone networks: Tipping the balance in protein folding diseases. Neurobiology of Disease, 40 (1): 12-20.
  • Adıyaman S. E. 2014. Saanen keçilerinde HSP 60 ve HSP 70 genlerinin kantitatif analizi. Adnan Menderes Ünivesitesi Sağlık Bilimleri Enstitüsü Biyokimya Anabilim Dalı Yüksek Lisans Tezi, Aydın, Türkiye, 75 s.
  • Chiang ML, Chou CC. 2009. Survival of Vibrio parahaemolyticus under environmental stresses as influenced by growth phase and pre-adaptation treatment. Food Microbiology, 26: 391-395.
  • Ferrando V, Quiberoni A, Reinhemer J, Suarez V. 2015. Resistance of functional Lactobacillus plantarum strains against food. Food Microbiology, 43: 63-71.
  • Yang HY, Kim SK, Choi SY, You DH, Lee SC, Bang WS, Yuk HG. 2015. Effect of acid, desiccation and heat stresses on the viability of Cronobacter sakazakii during rehydration of powdered infant formula and in simulated gastric fluid. Food Control, 50: 336-341.
  • Margesin R, Miteva V. 2011. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162: 346-361.
  • Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R. 2010. Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochemical and Biophysical Research Communications, 399: 336-340.
  • Berger F, Morellet N, Menu F, Potier P. 1996. Cold Shock and Cold Acclimation Proteins in the Psycrotrophic Bacterium Arthrobacter globiformis S155. Journal of Bacteriology, 178 (11): p, 2999-3007. 33. Madigan MT, Martinko JM, Clark DP. 2010. Brock Biology of Microorganisms. Tenth Edition, Pearson Education International, USA.
  • Derman Y, Söderholm H, Lindström M, Korkeala H. 2015. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502 Food Microbiology, 46: 463-470.
  • Phadtare S, Alsina J, Inouye M. 1999. Cold- shock response and cold-shock proteins. Current Opinion in Microbiology, 2: 175-180.
  • Ivancic T, Jamnik P, Stopar D. 2013. Cold shock CspA and CspB protein production during periodic temperature cycling in Escherichia coli. BMC Research Notes, 6: 248.
  • Wang Y, Delettre J, Guillot A, Corrieu G, Béal C. 2005. Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology, 50: 294-307.
  • Tripaty S, Sen R, Padhi SK, Sahu DK, Nandi S, Mohanty S, Maiti NK. 2014. Survey of the transcriptome of Brevibacillus borstelensis exposed to low temperature shock. Gene, 550:207-213.
  • Jin B, Jeong KW, Kim Y. 2014. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochemical and Biophysical Research Communications, 451: 402-407.
  • Tosun H. 2003. Bazı Patojen Bakterilerin Aside Tolerans Kazanmasının Tanımlanma ve Gıda Sanayindeki Önemi. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, İzmir, Türkiye, 179 s.
  • Foster JW. 1999. When protons attack: microbial strategies of acid adaptation. Current Opinion in Microbiology, 2: 170- 174.
  • Liu Y, Tang H, Lin Z, Ping Xu. 2015. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 33: 1484-1492.
  • Lee SY, Rhee MS, Dougherty RH, Kang DH. 2009. Antagonistic effect of acetic acid and salt for inactivating Escherichia coli O157:H7 in cucumber puree. Journal of Applied Microbiology, 108: 1361-1368.
  • Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajärvi I, Mättö J. 2004. Stationary-phase acid and heat treatment for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal of Applied Microbiology, 96: 1205-1214.
  • Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. International Journal of Food Microbiology, 147: 181-187.
  • Beales N. 2004. Adaptation of Microorganisms to Cold tempratures, Weak Acid Preservatives, Low pH, and Osmotic Stress. Comprehensive Reviews in Food Science and Food Safety, Vol.3.
  • Gülbezer S, Ökmen G. 2012. Ozmotik Koruyucular ve Mikroorganizmalar. Türk Bilimsel Derlemeler Dergisi, 5 (1): 41-52.
  • Yuan W, Ágoston R, Lee D, Lee SC, Yuk HG. 2012. Influence of lactate and asetate salt adaptation on Salmonella Typhimurium acid and heat resistance. Food Microbiology, 30: 448-452.
  • Burgess CM, Gianotti A, Gruzdev N, Holah J, Knİchel S, Lehner A, Margas E, Esser SS, Sela S, Tresse O. 2016. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. International Journal of Food Microbiology, 221: 37-53.
  • Gandhi M, Chikindas ML. 2007. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113: 1-15. 53. Glass KA, Loeffelholz JM, Ford JP, Doyle MP. 1992. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Applied and Environmental Microbiology, 58: 2513-2516.
  • Faleiro ML, Andrew PW, Power D. 2003. Stress response of Listeria monocytogenes isolated from cheese and other foods. International Journal of Food Microbiology, 84: 207-216.
  • Lee SY, Kang DH. 2008. Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control, 20: 1006-1012.
  • Yerer MB, Aydoğan S. 2000. Oksidatif Stres ve Antioksidanlar. Erciyes Üniversitesi Sağlık Bilimleri Dergisi, 9 (1): 49-53.
  • Tabakoğlu E, Durgut R. 2013. Veteriner Hekimlikte Oksidatif Stres ve Bazı Önemli Hastalıklarda Oksidatif Stresin Etkileri. Adana Veteriner Kontrol Enstitüsü Müdürlüğü Dergisi, 3 (1): 69-75.
  • Fu H, Yuan J, Gao H. 2015. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria. Archives of Biochemistry and Biophysics, 584: 28-35.
  • Akpoyraz M, Durak İ. 1995. Serbest Radikallerin Biyolojik Etkileri. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 48: 258-262.
  • Koca N, Karadeniz F. 2003. Serbest Radikal Oluşum Mekanizmaları ve Vücuttaki Antioksidan Savunma Sistemleri. Gıda Mühendisliği Dergisi, s 32-37.
  • Freeman BA, Crapo JD. 1982. Biology of Disease. Laboratory Investigation, 47 (5): 412-426. 62. Crawford DR, Davies KJA. 1994. Adaptive Response and Oxidative Stress. Environmental Health Perspectives, 102 (10): 25-28.

FUNDAMENTAL STRESS FACTORS AFFECTING THE MICROORGANISMS

Yıl 2016, Cilt: 41 Sayı: 6, 427 - 434, 01.12.2016

Öz

Microorganisms are exposed to various stress factors such as heat, oxygen, acid, bile salts and osmoticstress in the environment. Microorganisms may survive and/or get adapted to the environmental conditionsby the physiological adaptations when they come across to such stress factors. Stress response systemvaries according to the type of microorganisms, stress intensity applied to microorganisms and whetherthey can be adapted to this stress. The adaptation of microorganism to the negative conditions poses aproblem for inactivation of saprophytes and foodborne pathogens. Considering food safety and shelf lifeof products, it is required not to ignore these characteristics of pathogens. As in probiotic microorganisms,when high vitality ratio is required and when it comes to eliminating pathogen microorganisms fromthe environment, focus should be on adaptation or tolerance development. In this review, the mainstress factors such as heat, acid, osmotic and oxidative stresses on microorganisms, adaptation conditionsof microorganisms under these stress conditions and mechanisms of adaptation are discussed in thelight of the relevant literature

Kaynakça

  • Dikici A. 2009. Çevresel Stres Faktörlerine Karşı Bakteriyel Adaptasyonlar ve Mekanizmaları. Gıda Teknolojileri Elektronik Dergisi, 4 (3): 59-68.
  • Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecological Society of America Annual Meeting Abstracts, 88 (6): 1386-1394.
  • Russell NJ, Evans RI, Steeg PF, Hellemons J, Verheul A, Abee T. 1995. Membranes as a target for stress adaptation. International Journal of Food Microbiology, 28: 255-261.
  • Sorensen JG, Kristensen TN, Loeschcke V. 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6: 1025-1037.
  • Aksöz N. 1985. Halofilik Bakteriler. Mikrobiyoloji Bülteni, 19: 161-167.
  • Yousef AE, Courtney PD. 2003. Basics of stres adaptation and implications in new generation foods. Microbial Stres Adaptation and Food Safety. (Editor: AE Yousef and VK Juneja). CRC Pres, New York. Syf:1–25.
  • Hill C, O’Driscoll B, Booth I. 1995. Acid adaptation and food poisoning microorganisms. International Journal of Food Microbiology, 25: 245-254.
  • Öztürk FY. 2010. Asit ve Tuza Adapte Edilmiş Escherichia coli
  • monocytogenes’in Türk Sucuklarında Yaşama Düzeylerinin Belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Ankara, Türkiye, 132 s.
  • Velliou EG, Derlinden EV, Cappuyns AM, Goossens J, Geeraerd AH, Devlieghere F, Van Impe JF. 2011. Heat adaptation of Escherichia coli K12: effect of acid and glucose. Procedia Food Science, 1: 987-993.
  • O157:H7 ve Listeria 10. Isohanni P, Huehn S, Aho T, Alter T, Lyhs U. 2013. Heat stress adaptation induces cross-protection against lethal acid stress conditions in Arcobacter butzleri but not in Campylobacter jenuni. Food Microbiology, 34: 431-435.
  • Oger PM, Cario A. 2013. Adaptation of the membrane in Archaea. Biophysical Chemistry, 183: 42-56.
  • Ordóñez AA, Broussolle V, Colin P, Nguyen- The C, Prieto M. 2015. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. International Journal of Food Microbiology, 213: 99-109.
  • Chowdhury R, Sahu GK, Das J. 1996. Stress response in pathogenic bacteria. Journal Biosciences, 21 (2): 149-160.
  • Requana JM (ed). 2012. Stress Response in Microbiology. Caister Academic Press, Madrid, Spain, 436 p.
  • Dahlsten E, Lindström M, Korkeala H. 2015. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum. Research in Microbiology, 166: 344-352.
  • Ergin F, Çomak Göçer EM, Aşçı Arslan A, Küçükçetin A. 2012. Probiyotik Bakterilerin Düşük Sıcaklık Stresine Adaptasyonu. Akademik Gıda, 10: 65-69.
  • Moat AG, Foster JW, Spector MP. 2002. Microbial Stress Responses. In: Microbial Physiology, Fourth Edition, John Wiley & Sons, Inc., USA, s 582- 611. 18. Verghese J, Abrams J, Wang Y, Morano KA. 2012. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiology and Molecular Biology Reviews, 76 (2): 115-158.
  • Phadtare S, Inouye M. 2008. Cold-Shock Proteins. Psychrophiles: from Biodiversity to Biotechnology, Margesin R (chief ed), Springer, Heidelberg, Germany, p. 191-205.
  • Panoff JM, Corroler D, Thammavongs B, Boutibonnes O. 1997. Differentiation between Cold Shock Proteins and Cold Acclimation Proteins in a Mesophilic Gram-Positive Bacterium Enterococcus faecalis JH2-2. Journal of Bacteriology, 179 (13): 4451-4454.
  • Aşkar TK, Ergün N, Turunç V. 2007. Isı Şok Proteinler ve Fizyolojik Rolleri. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 13 (1): 109-114.
  • Guzzo J. 2012. Biotechnical applications of small heat shock proteins from bacteria. The International Journal of Biochemistry & Cell Biology, 44: 1698-1705.
  • Kiang JG, Tsokos GC. 1998. Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry and Physiology. Pharmacology & Therapeutics, 80 (2): 183-201.
  • Moseley PL. 1997. Heat shock proteins and heat adaptation of the whole organism whole organism. Journal of Applied Physiology. 83 (5): 1413-1417. 25. Voisine C, Pedersen JS, Morimoto RI. 2010. Chaperone networks: Tipping the balance in protein folding diseases. Neurobiology of Disease, 40 (1): 12-20.
  • Adıyaman S. E. 2014. Saanen keçilerinde HSP 60 ve HSP 70 genlerinin kantitatif analizi. Adnan Menderes Ünivesitesi Sağlık Bilimleri Enstitüsü Biyokimya Anabilim Dalı Yüksek Lisans Tezi, Aydın, Türkiye, 75 s.
  • Chiang ML, Chou CC. 2009. Survival of Vibrio parahaemolyticus under environmental stresses as influenced by growth phase and pre-adaptation treatment. Food Microbiology, 26: 391-395.
  • Ferrando V, Quiberoni A, Reinhemer J, Suarez V. 2015. Resistance of functional Lactobacillus plantarum strains against food. Food Microbiology, 43: 63-71.
  • Yang HY, Kim SK, Choi SY, You DH, Lee SC, Bang WS, Yuk HG. 2015. Effect of acid, desiccation and heat stresses on the viability of Cronobacter sakazakii during rehydration of powdered infant formula and in simulated gastric fluid. Food Control, 50: 336-341.
  • Margesin R, Miteva V. 2011. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162: 346-361.
  • Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R. 2010. Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochemical and Biophysical Research Communications, 399: 336-340.
  • Berger F, Morellet N, Menu F, Potier P. 1996. Cold Shock and Cold Acclimation Proteins in the Psycrotrophic Bacterium Arthrobacter globiformis S155. Journal of Bacteriology, 178 (11): p, 2999-3007. 33. Madigan MT, Martinko JM, Clark DP. 2010. Brock Biology of Microorganisms. Tenth Edition, Pearson Education International, USA.
  • Derman Y, Söderholm H, Lindström M, Korkeala H. 2015. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502 Food Microbiology, 46: 463-470.
  • Phadtare S, Alsina J, Inouye M. 1999. Cold- shock response and cold-shock proteins. Current Opinion in Microbiology, 2: 175-180.
  • Ivancic T, Jamnik P, Stopar D. 2013. Cold shock CspA and CspB protein production during periodic temperature cycling in Escherichia coli. BMC Research Notes, 6: 248.
  • Wang Y, Delettre J, Guillot A, Corrieu G, Béal C. 2005. Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology, 50: 294-307.
  • Tripaty S, Sen R, Padhi SK, Sahu DK, Nandi S, Mohanty S, Maiti NK. 2014. Survey of the transcriptome of Brevibacillus borstelensis exposed to low temperature shock. Gene, 550:207-213.
  • Jin B, Jeong KW, Kim Y. 2014. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochemical and Biophysical Research Communications, 451: 402-407.
  • Tosun H. 2003. Bazı Patojen Bakterilerin Aside Tolerans Kazanmasının Tanımlanma ve Gıda Sanayindeki Önemi. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, İzmir, Türkiye, 179 s.
  • Foster JW. 1999. When protons attack: microbial strategies of acid adaptation. Current Opinion in Microbiology, 2: 170- 174.
  • Liu Y, Tang H, Lin Z, Ping Xu. 2015. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 33: 1484-1492.
  • Lee SY, Rhee MS, Dougherty RH, Kang DH. 2009. Antagonistic effect of acetic acid and salt for inactivating Escherichia coli O157:H7 in cucumber puree. Journal of Applied Microbiology, 108: 1361-1368.
  • Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajärvi I, Mättö J. 2004. Stationary-phase acid and heat treatment for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal of Applied Microbiology, 96: 1205-1214.
  • Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. International Journal of Food Microbiology, 147: 181-187.
  • Beales N. 2004. Adaptation of Microorganisms to Cold tempratures, Weak Acid Preservatives, Low pH, and Osmotic Stress. Comprehensive Reviews in Food Science and Food Safety, Vol.3.
  • Gülbezer S, Ökmen G. 2012. Ozmotik Koruyucular ve Mikroorganizmalar. Türk Bilimsel Derlemeler Dergisi, 5 (1): 41-52.
  • Yuan W, Ágoston R, Lee D, Lee SC, Yuk HG. 2012. Influence of lactate and asetate salt adaptation on Salmonella Typhimurium acid and heat resistance. Food Microbiology, 30: 448-452.
  • Burgess CM, Gianotti A, Gruzdev N, Holah J, Knİchel S, Lehner A, Margas E, Esser SS, Sela S, Tresse O. 2016. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. International Journal of Food Microbiology, 221: 37-53.
  • Gandhi M, Chikindas ML. 2007. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113: 1-15. 53. Glass KA, Loeffelholz JM, Ford JP, Doyle MP. 1992. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Applied and Environmental Microbiology, 58: 2513-2516.
  • Faleiro ML, Andrew PW, Power D. 2003. Stress response of Listeria monocytogenes isolated from cheese and other foods. International Journal of Food Microbiology, 84: 207-216.
  • Lee SY, Kang DH. 2008. Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control, 20: 1006-1012.
  • Yerer MB, Aydoğan S. 2000. Oksidatif Stres ve Antioksidanlar. Erciyes Üniversitesi Sağlık Bilimleri Dergisi, 9 (1): 49-53.
  • Tabakoğlu E, Durgut R. 2013. Veteriner Hekimlikte Oksidatif Stres ve Bazı Önemli Hastalıklarda Oksidatif Stresin Etkileri. Adana Veteriner Kontrol Enstitüsü Müdürlüğü Dergisi, 3 (1): 69-75.
  • Fu H, Yuan J, Gao H. 2015. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria. Archives of Biochemistry and Biophysics, 584: 28-35.
  • Akpoyraz M, Durak İ. 1995. Serbest Radikallerin Biyolojik Etkileri. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 48: 258-262.
  • Koca N, Karadeniz F. 2003. Serbest Radikal Oluşum Mekanizmaları ve Vücuttaki Antioksidan Savunma Sistemleri. Gıda Mühendisliği Dergisi, s 32-37.
  • Freeman BA, Crapo JD. 1982. Biology of Disease. Laboratory Investigation, 47 (5): 412-426. 62. Crawford DR, Davies KJA. 1994. Adaptive Response and Oxidative Stress. Environmental Health Perspectives, 102 (10): 25-28.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA42TN96TP
Bölüm Araştırma Makalesi
Yazarlar

Şehriban Uğuz Bu kişi benim

Seval Andiç Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 41 Sayı: 6

Kaynak Göster

APA Uğuz, Ş., & Andiç, S. (2016). MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ. Gıda, 41(6), 427-434.
AMA Uğuz Ş, Andiç S. MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ. GIDA. Aralık 2016;41(6):427-434.
Chicago Uğuz, Şehriban, ve Seval Andiç. “MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ”. Gıda 41, sy. 6 (Aralık 2016): 427-34.
EndNote Uğuz Ş, Andiç S (01 Aralık 2016) MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ. Gıda 41 6 427–434.
IEEE Ş. Uğuz ve S. Andiç, “MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ”, GIDA, c. 41, sy. 6, ss. 427–434, 2016.
ISNAD Uğuz, Şehriban - Andiç, Seval. “MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ”. Gıda 41/6 (Aralık 2016), 427-434.
JAMA Uğuz Ş, Andiç S. MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ. GIDA. 2016;41:427–434.
MLA Uğuz, Şehriban ve Seval Andiç. “MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ”. Gıda, c. 41, sy. 6, 2016, ss. 427-34.
Vancouver Uğuz Ş, Andiç S. MİKROORGANİZMALARA ETKİ EDEN BAŞLICA STRES FAKTÖRLERİ. GIDA. 2016;41(6):427-34.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/