Araştırma Makalesi
BibTex RIS Kaynak Göster

RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU

Yıl 2019, Cilt: 44 Sayı: 5, 810 - 818, 17.08.2019
https://doi.org/10.15237/gida.GD19098

Öz

Bu çalışmada, selüloz asetat çözeltisinden elektroeğirme
prosesi ile enkapsülasyon matrisleri üretilmiş ve bu matrislerin resveratrolün
enkapsülasyonundaki performansları incelenmiştir. Taramalı elektron mikroskobu
(SEM) ile incelendiğinde, selüloz asetat liflerinin düzgün yüzeyli olduğu ve
damlacık içermediği görülmüştür. Resveratrol yüklü liflerin ve yüksüz liflerin
ortalama çapları sırasıyla 493 nm ve 478 nm olarak belirlenmiştir.
Resveratrolün enkapsülasyon etkinliği %94.5 olarak bulunmuştur. Antioksidan
aktivite analizi, depolama sırasında elektroeğrilmiş liflere enkapsülasyon ile
biyoaktif bileşiğin bozunmasının azaldığını ortaya koymuştur.
In vitro
salınım çalışması, 20 saat içerisinde başlangıçtaki resveratrolün %11’inin
tampon ortamına salındığını ve sonrasında salınımın durduğunu göstermiştir.
Sonuç olarak, elektroeğrilmiş selüloz asetat liflerinin resveratrol için etkin
enkapsülasyon matrisleri olarak kullanılma potansiyeli olduğu belirlenmiştir.

Kaynakça

  • Aceituno-Medina, M., Mendoza, S., Lagaron, J.M., Lopez-Rubio, A. (2015). Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate-Pullulan electrospun fibers. LWT- Food Science and Technology 62: 970-975, doi: 10.1016/j.lwt.2015.02.025.
  • Al-Attar, T., Madihally, S.V. (2018). Influence of controlled release of resveratrol from electrospun fibers in combination with siRNA on leukemia cells. European Journal of Pharmaceutical Sciences 123: 173–183, doi: 10.1016/j.ejps.2018.07.043.
  • Alves, N.E.G., Valdés, S.T., Silveira, C.M.M., Martino, H.S.D.D., Milagro, F.I., Moreno-Aliaga, M.J., Ribeiro, S.M.R. (2012). Studies on mechanistic role of natural bioactive compounds in the management of obesity an overview. Open Nutraceuticals Journal 5: 193-206, doi: http://dx.doi.org/10.2174/1876396001205010193.
  • Aytac, Z., Yildiz, Z.I., Kayaci-Senirmak, F., Tekinay, T., Uyar, T. (2017). Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chemistry 231: 192-201, doi: 10.1016/j.foodchem.2017.03.113
  • Chantarodsakun, T., Vongsetskul, T., Jangpatarapongsa, K., Tuchinda, P., Uamsiri, S., Bamrungcharoen, C., Kumkate, S., Opaprakasit, P., Tangboriboonrat, P. (2014). [6]-Gingerol-loaded cellulose acetate electrospun fibers as a topical carrier for controlled release. Polymer Bulletin 71: 3163-3176, doi: 10.1007/s00289-014-1243-x.
  • Davidov-Pardo, G., McClements, D.J. (2014). Resveratrol encapsulation: Designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in Food Science & Technology 38: 88e103, 10.1016/j.tifs.2014.05.003.
  • Ghorani, B., Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51: 227-240, doi: 10.1016/j.foodhyd.2015.05.024
  • Han, S.O., Youk, J.H., Min, K.D., Kang, Y.O., Park, W.H. (2008). Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Materials Letters 62: 759-762, doi: 10.1016/j.matlet.2007.06.059
  • Jyothi, N.V., Prasanna, P.M., Sakarkar, S.N., Prabha, K.S., Ramaiah, P.S., Srawan, G.Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation 27: 187-197, doi: 10.3109/02652040903131301
  • Keun, S.W., Ho, Y.J., Seung, L.T., Ho, P.W. (2004). Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science Part B: Polymer Physics 42: 5-11, doi: 10.1002/polb.10668.
  • Kiatyongchai, T., Wongsasulak, S., Yoovidhya, T. (2014). Coaxial Electrospinning and Release Characteristics of Cellulose Acetate–Gelatin Blend Encapsulating a Model Drug. Journal of Applied Polymer Science 131: 40167, doi: 10.1002/app.40167
  • Kumpugdee-Vollrath, M., Ibold, Y., Sriamornsak, P. (2012). Solid state characterization of trans resveratrol complexes with different cyclodextrins. Journal of the Asian Association of Schools of Pharmacy 1(2): 125 –136.
  • Orallo, F., Alvarez, E., Camina, M., Leiro, J. M., Gomez, E., Fernandez, P. (2002). The possible implication of trans-Resveratrol in the cardioprotective effects of long-term moderate wine consumption. Molecular Pharmacology 61: 294−302, doi: 10.1111/j.1749-6632.2010.05843.x
  • Palsamy, P., Subramanian, S. (2011). Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2−Keap1 signaling. Biochimica et Biophysica Acta 1812: 719−731, doi: 10.1016/j.bbadis.2011.03.008.
  • Penalva, R., Esparza, I., Larraneta, E., González-Navarro, C.J., Gamazo, C., Irache, J.M. (2015). Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of Agricultural and Food Chemistry 63: 5603−5611, doi: 10.1021/jf505694e.
  • Poornima, B., Korrapati, P.S. (2017). Fabrication of chitosan-polycaprolactone composite nanofibrousscaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydrate Polymers 157: 1741-1749, doi: 10.1016/j.carbpol.2016.11.056.
  • Rauf, A., Imran, M., Suleria, H.A.R., Ahmad, B., Peters, D.G., Mubarak, M.S. (2017). A comprehensive review of the health perspectives of resveratrol. Food and Function 8: 4284–4305, doi:10.1039/c7fo01300k.
  • Riccitiello, F., De Luise, A., Conte, R., D'Aniello, S., Vittoria, V., Di Salle, A., Calarco, A., Peluso, G. (2018). Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. European Polymer Journal 99: 289-297, doi: 10.1016/j.eurpolymj.2017.12.035
  • Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A New Procedure To Measure the Antioxidant Activity of Insoluble Food Components. Journal of Agricultural and Food Chemistry 55: 7676-7681, doi: 10.1021/jf071291z
  • Suwantong, O., Opanasopit, P., Ruktanonchai, U., Supaphol, P. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48: 7546-7557, doi: 10.1016/j.polymer.2007.11.019
  • Suwantong, O., Ruktanonchai, U., Supaphol, P. (2008). Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer 49: 4239-4247, doi: 10.1016/j.polymer.2008.07.020.
  • Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H., Hoeks, J., van der Krieken, S., Ryu, D., Kersten, S., Moonen-Kornips, E., Hesselink, M.K., Kunz, I., SchrauwenHinderling, V.B., Blaak, E.E., Auwerx, J., Schrauwen, P. (2011). Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metabolism 14: 612−622, doi: https://doi.org/10.1016/j.cmet.2011.10.002.
  • Vongsetskul, T., Phurayar, P., Chutimasakul, T., Tuchinda, P., Uamsiri, S., Kumkate, S., Pearngam, P., Jitpibull, J., Samphaongern, C., Tangboriboonrat, P. (2016). Acanthus ebracteatus Vahl. extract-loaded cellulose acetate ultrafine fibers as a topical carrier for controlled-release applications. Polymer Bulletin 73: 3319-3331, doi: 10.1007/s00289-016-1658-7
  • Yan, J., White, K., Yu, D.G., Zhao, X.Y. (2014). Sustained-release multiple-component cellulose acetate nanofibers fabricated using a modified coaxial electrospinning process. Journal of Materials Science 49: 538–547, doi: 10.1007/s10853-013-7733-7.
  • Zupančič, Š., Baumgartner, S., Lavrič, Z., Petelin, M., Kristl, J. (2015). Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. Journal of Drug Delivery Science and Technology 30: 408–416, doi: 10.1016/j.jddst.2015.07.009.

CHARACTERIZATION OF RESVERATROL LOADED CELLULOSE ACETATE FIBERS

Yıl 2019, Cilt: 44 Sayı: 5, 810 - 818, 17.08.2019
https://doi.org/10.15237/gida.GD19098

Öz

In this work, encapsulation matrices were fabricated by
electrospinning of cellulose acetate solution and their performance for the
encapsulation of resveratrol was evaluated. Scanning electron microscopy (SEM)
results showed that cellulose acetate fibers were bead-free and smooth. The
mean diameters of resveratrol loaded and unloaded fibers were found to be 493 nm
and 478 nm, respectively. Encapsulation efficiency of resveratrol was 95%.
Antioxidant activity assay confirmed that the encapsulation via electrospun
fibers reduced the degradation of bioactive compounds during storage.
In-vitro
release study showed that 11% of the resveratrol in cellulose acetate fibers
was released into buffer medium within 20 h and after that, the release reached
plateau. Therefore, electrospun cellulose acetate fibers are promising to be
used as an efficient encapsulating matrices for resveratrol.

Kaynakça

  • Aceituno-Medina, M., Mendoza, S., Lagaron, J.M., Lopez-Rubio, A. (2015). Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate-Pullulan electrospun fibers. LWT- Food Science and Technology 62: 970-975, doi: 10.1016/j.lwt.2015.02.025.
  • Al-Attar, T., Madihally, S.V. (2018). Influence of controlled release of resveratrol from electrospun fibers in combination with siRNA on leukemia cells. European Journal of Pharmaceutical Sciences 123: 173–183, doi: 10.1016/j.ejps.2018.07.043.
  • Alves, N.E.G., Valdés, S.T., Silveira, C.M.M., Martino, H.S.D.D., Milagro, F.I., Moreno-Aliaga, M.J., Ribeiro, S.M.R. (2012). Studies on mechanistic role of natural bioactive compounds in the management of obesity an overview. Open Nutraceuticals Journal 5: 193-206, doi: http://dx.doi.org/10.2174/1876396001205010193.
  • Aytac, Z., Yildiz, Z.I., Kayaci-Senirmak, F., Tekinay, T., Uyar, T. (2017). Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chemistry 231: 192-201, doi: 10.1016/j.foodchem.2017.03.113
  • Chantarodsakun, T., Vongsetskul, T., Jangpatarapongsa, K., Tuchinda, P., Uamsiri, S., Bamrungcharoen, C., Kumkate, S., Opaprakasit, P., Tangboriboonrat, P. (2014). [6]-Gingerol-loaded cellulose acetate electrospun fibers as a topical carrier for controlled release. Polymer Bulletin 71: 3163-3176, doi: 10.1007/s00289-014-1243-x.
  • Davidov-Pardo, G., McClements, D.J. (2014). Resveratrol encapsulation: Designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in Food Science & Technology 38: 88e103, 10.1016/j.tifs.2014.05.003.
  • Ghorani, B., Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51: 227-240, doi: 10.1016/j.foodhyd.2015.05.024
  • Han, S.O., Youk, J.H., Min, K.D., Kang, Y.O., Park, W.H. (2008). Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Materials Letters 62: 759-762, doi: 10.1016/j.matlet.2007.06.059
  • Jyothi, N.V., Prasanna, P.M., Sakarkar, S.N., Prabha, K.S., Ramaiah, P.S., Srawan, G.Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation 27: 187-197, doi: 10.3109/02652040903131301
  • Keun, S.W., Ho, Y.J., Seung, L.T., Ho, P.W. (2004). Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science Part B: Polymer Physics 42: 5-11, doi: 10.1002/polb.10668.
  • Kiatyongchai, T., Wongsasulak, S., Yoovidhya, T. (2014). Coaxial Electrospinning and Release Characteristics of Cellulose Acetate–Gelatin Blend Encapsulating a Model Drug. Journal of Applied Polymer Science 131: 40167, doi: 10.1002/app.40167
  • Kumpugdee-Vollrath, M., Ibold, Y., Sriamornsak, P. (2012). Solid state characterization of trans resveratrol complexes with different cyclodextrins. Journal of the Asian Association of Schools of Pharmacy 1(2): 125 –136.
  • Orallo, F., Alvarez, E., Camina, M., Leiro, J. M., Gomez, E., Fernandez, P. (2002). The possible implication of trans-Resveratrol in the cardioprotective effects of long-term moderate wine consumption. Molecular Pharmacology 61: 294−302, doi: 10.1111/j.1749-6632.2010.05843.x
  • Palsamy, P., Subramanian, S. (2011). Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2−Keap1 signaling. Biochimica et Biophysica Acta 1812: 719−731, doi: 10.1016/j.bbadis.2011.03.008.
  • Penalva, R., Esparza, I., Larraneta, E., González-Navarro, C.J., Gamazo, C., Irache, J.M. (2015). Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of Agricultural and Food Chemistry 63: 5603−5611, doi: 10.1021/jf505694e.
  • Poornima, B., Korrapati, P.S. (2017). Fabrication of chitosan-polycaprolactone composite nanofibrousscaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydrate Polymers 157: 1741-1749, doi: 10.1016/j.carbpol.2016.11.056.
  • Rauf, A., Imran, M., Suleria, H.A.R., Ahmad, B., Peters, D.G., Mubarak, M.S. (2017). A comprehensive review of the health perspectives of resveratrol. Food and Function 8: 4284–4305, doi:10.1039/c7fo01300k.
  • Riccitiello, F., De Luise, A., Conte, R., D'Aniello, S., Vittoria, V., Di Salle, A., Calarco, A., Peluso, G. (2018). Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. European Polymer Journal 99: 289-297, doi: 10.1016/j.eurpolymj.2017.12.035
  • Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A New Procedure To Measure the Antioxidant Activity of Insoluble Food Components. Journal of Agricultural and Food Chemistry 55: 7676-7681, doi: 10.1021/jf071291z
  • Suwantong, O., Opanasopit, P., Ruktanonchai, U., Supaphol, P. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48: 7546-7557, doi: 10.1016/j.polymer.2007.11.019
  • Suwantong, O., Ruktanonchai, U., Supaphol, P. (2008). Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer 49: 4239-4247, doi: 10.1016/j.polymer.2008.07.020.
  • Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H., Hoeks, J., van der Krieken, S., Ryu, D., Kersten, S., Moonen-Kornips, E., Hesselink, M.K., Kunz, I., SchrauwenHinderling, V.B., Blaak, E.E., Auwerx, J., Schrauwen, P. (2011). Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metabolism 14: 612−622, doi: https://doi.org/10.1016/j.cmet.2011.10.002.
  • Vongsetskul, T., Phurayar, P., Chutimasakul, T., Tuchinda, P., Uamsiri, S., Kumkate, S., Pearngam, P., Jitpibull, J., Samphaongern, C., Tangboriboonrat, P. (2016). Acanthus ebracteatus Vahl. extract-loaded cellulose acetate ultrafine fibers as a topical carrier for controlled-release applications. Polymer Bulletin 73: 3319-3331, doi: 10.1007/s00289-016-1658-7
  • Yan, J., White, K., Yu, D.G., Zhao, X.Y. (2014). Sustained-release multiple-component cellulose acetate nanofibers fabricated using a modified coaxial electrospinning process. Journal of Materials Science 49: 538–547, doi: 10.1007/s10853-013-7733-7.
  • Zupančič, Š., Baumgartner, S., Lavrič, Z., Petelin, M., Kristl, J. (2015). Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. Journal of Drug Delivery Science and Technology 30: 408–416, doi: 10.1016/j.jddst.2015.07.009.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fahriye Ceyda Dudak Şeker

Yayımlanma Tarihi 17 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 44 Sayı: 5

Kaynak Göster

APA Dudak Şeker, F. C. (2019). RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU. Gıda, 44(5), 810-818. https://doi.org/10.15237/gida.GD19098
AMA Dudak Şeker FC. RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU. GIDA. Ağustos 2019;44(5):810-818. doi:10.15237/gida.GD19098
Chicago Dudak Şeker, Fahriye Ceyda. “RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU”. Gıda 44, sy. 5 (Ağustos 2019): 810-18. https://doi.org/10.15237/gida.GD19098.
EndNote Dudak Şeker FC (01 Ağustos 2019) RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU. Gıda 44 5 810–818.
IEEE F. C. Dudak Şeker, “RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU”, GIDA, c. 44, sy. 5, ss. 810–818, 2019, doi: 10.15237/gida.GD19098.
ISNAD Dudak Şeker, Fahriye Ceyda. “RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU”. Gıda 44/5 (Ağustos 2019), 810-818. https://doi.org/10.15237/gida.GD19098.
JAMA Dudak Şeker FC. RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU. GIDA. 2019;44:810–818.
MLA Dudak Şeker, Fahriye Ceyda. “RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU”. Gıda, c. 44, sy. 5, 2019, ss. 810-8, doi:10.15237/gida.GD19098.
Vancouver Dudak Şeker FC. RESVERATROL YÜKLÜ SELÜLOZ ASETAT LİFLERİNİN KARAKTERİZASYONU. GIDA. 2019;44(5):810-8.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/