Araştırma Makalesi
BibTex RIS Kaynak Göster

LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ

Yıl 2020, Cilt: 45 Sayı: 3, 496 - 505, 15.06.2020
https://doi.org/10.15237/gida.GD19150

Öz

Bu çalışmada, Ankara ilinin farklı bölgelerinden temin edilen serbest dolaşan köy tavuklarının gastrointestinal sisteminden Lactobacillus cinsine ait 119 bakteri izole edilmiştir. Yüksek ekzopolisakkarit (EPS) üretim kapasitesine sahip 11 izolat seçilmiştir. Seçilen izolatların biyokimyasal ve moleküler tanımlamaları gerçekleştirilmiş ve tanımlama sonuçlarına göre 6 izolatın Lactobacillus salivarius, 2 izolatın Lactobacillus agilis, 2 izolatın Lactobacillus reuteri ve 1 izolatın da Lactobacillus saerimneri olduğu tespit edilmiştir. Yüksek EPS üreten 3 suşun (L. salivarius ZDM2132, BİS312 ve BİS722) EPS’leri kültür ortamından izole edilerek liyofilize edilmiştir. Bifidobacterium gallinarum ATCC 33777 suşunun, L. salivarius ZDM2132, BİS312 ve BİS722 bakterilerden elde edilen liyofilize EPS’yi (l-EPS) fermente edebilme kapasitesi ve bifidobakterilerin gelişimini düzenleyici (BGD) etkileri ticari bir prebiyotik olan inülin ile karşılaştırılmıştır. l-EPS’lerin B. gallinarum tarafından fermente edildiği ve inülinden daha iyi bir BGD etkisi gösterdiği gözlemlenmiştir.

Destekleyen Kurum

Gıda Tarım ve Hayvancılık Bakanlığı

Proje Numarası

TAGEM/15/AR-GE/40

Teşekkür

Gıda Tarım ve Hayvancılık Bakanlığı’na TAGEM/15/AR-GE/40 nolu proje için vermiş oldukları araştırma-geliştirme desteklerinden dolayı teşekkür ederiz.

Kaynakça

  • Referans1 Alloui, M. N., Szczurek, W., Świątkiewicz, S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition: A review. Ann Anim Sci, 13(1), 17-32.
  • Referans2 Apajalahti, J., Kettunen, A., Graham, H. (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poult Sci J, 60(2), 223-232.
  • Referans3 Badel, S., Bernardi, T., Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv, 29(1), 54-66.
  • Referans4 Bai, K., Huang, Q., Zhang, J., He, J., Zhang, L., Wang, T. (2016). Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci, 96(1), 74-82.
  • Referans5 Baldwin, S.; Hughes, R.J.; Van, T.T.H.; Moore, R.J.; Stanley, D. (2018). At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE, 13, e0194825.
  • Referans6 Bennani, S, Mchiouer, K., Rokni, Y., Meziane, M. (2017). Characterisation and identification of lactic acid bacteria isolated from Moroccan raw cow’s milk. J Mater Environ Sci, 8(S), 4934-4944.
  • Referans7 Caly, D.L.; D’Inca, R.; Auclair, E.; Drider, D. (2015). Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: A microbiologist’s perspective. Front Microbiol, 6, 1336.
  • Referans8 Chen, C. Y., Chen, S. W., Wang, H. T., (2017). Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens. Asian-Australas J Anim Sci, 30(2); 211.
  • Referans9 Clavijo, V., Flórez, M. J. V. (2017). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult Sci, 97(3), 1006-1021.
  • Referans10 El-Shall, N.A., Awad, A.M., El-Hack, M.E.A., Naiel, M.A., Othman, S.I., Allam, A.A., Sedeik, M.E. (2020). The simultaneous administration of a probiotic or prebiotic with live salmonella vaccine improves growth performance and reduces fecal shedding of the bacterium in salmonella-challenged broilers. Anim, 10, 70.
  • Referans11 Gadde, U., Kim, W.H., Oh, S.T., Lillehoj, H.S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim Health Res Rev, 18, 26–45.
  • Referans12 Halkman A. K. 2019. Gıda Mikrobiyolojisi II ders notları. Ank. Üniv. Mühendislik Fakültesi Gıda Mühendisliği Bölümü.
  • Referans13 Han, G.G., Kim, E.B., Lee, J., Lee, J.Y., Jin, G., Park, J., Huh, C.S., Kwon, I.K., Kil, D.Y., Choi, Y.J., Kong, C. (2016). Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. Springerpl, 5(1), 911.
  • Referans14 Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sanchez, B., Margolles, A. (2017). Bifidobacteria and their health-promoting effects. Microbiol Spect, 5(3).
  • Referans15 Ibrahim, R.A., Cryer, T.L., Lafi, S.Q., Basha, E., Good, L., Tarazi, Y.H. (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet Res, 15(159), 2- 16.
  • Referans16 Kıran, F., Osmanağaoğlu, Ö. (2011). Laktik asit bakterilerinin (LAB) identifikasyonunda/tiplendirmesinde kullanılan moleküler yöntemler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 27(1), 62-74.
  • Referans17 Kobierecka, P. A., Wyszyńska, A. K., Aleksandrzak-Piekarczyk, T., Kuczkowski, M., Tuzimek, A., Piotrowska, W., Jagusztyn-Krynicka, E. K. (2017). In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. Microbiol, 6(5), e00512.
  • Referans18 Korakli, M., Gänzle, M. G., Vogel, R. F. (2002). Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol, 92(5), 958-965.
  • Referans19 Madej, J.P., Stefaniak, T., Bednarczyk, M. (2015). Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs’ morphology in chickens. Poult Sci, 94, 1209–1219.
  • Referans20 Reuben R.C, Roy P.C., Sarkar S.L., Alam R., Jahid K.I. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol, 19:253.
  • Referans21 Salazar, N., Gueimonde, M., de los Reyes-Gavilan, C. G., Ruas-Madiedo, P. (2016). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr, 56(9), 1440-1453.
  • Referans22 Sarikaya, H., Aslim, B., Yuksekdag, Z. N. (2017). Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (L-EPSs) from Lactobacilli strains. Int J Food Prop, 20(2), 362-371.
  • Referans23 Shang, Y., Kumar, S., Oakley, B., Kim, W.K. (2018). Chicken gut microbiota: importance and detection technology. Fron Vet Sci. 5.
  • Referans24 Shao, Y., Zhang, W., Guo, H., Pan, L., Zhang, H., Sun, T. (2015). Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control, 50, 250-258.
  • Referans25 Tarabees, R., Gafar, K. M., EL-Sayed, M. S., Shehata, A. A., Ahmed, M. (2018). Effects of dietary supplementation of probiotic mix and prebiotic on growth performance, cecal microbiota composition, and protection against Escherichia coli O78 in broiler chickens. Probio Antimicrob Proteins, 10, 1-9.
  • Referans26 Tayeri, V., Seidavi, A., Asadpour, L., Phillips, C.J.C. (2018). A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Vet Res Commun, 42, 195–207.
  • Referans27 Toghyani, M. and Faghan, N. (2017). Effect of Sumac (Rhus Coriaria L.) Fruit powder as an antibiotic growth promoter substitution on growth performance, ımmune responses and serum lipid profile of broiler chicks. Indian J Pharm Educ Res, 51(3), S295-S298.
  • Referans28 Tsuda, H., Hara, K., Miyamoto, T. (2008). Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J Dairy Sci, 91(8), 2960-2966.
  • Referans29 Wang, J., Zhao, X., Yang, Y., Zhao, A., Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol, 74, 119-126.
  • Referans30 Yonezawa, S., Xiao, J. Z., Odamaki, T., Ishida, T., Miyaji, K., Yamada, A., Yaeshima, T., Iwatsuki, K. (2010). Improved growth of bifidobacteria by cocultivation with Lactococcus lactis subspecies lactis. J Dairy Sci, 93(5), 1815-1823.

DETERMINATION OF THE LYOPHILIZED EXOPOLYSACCHARIDES (L-EPS) OF LACTOBACILLUS BACTERIA BIFIDOGENIC GROWTH STIMULATOR EFFECT

Yıl 2020, Cilt: 45 Sayı: 3, 496 - 505, 15.06.2020
https://doi.org/10.15237/gida.GD19150

Öz

In this study, 119 bacteria belonging to the genus Lactobacillus were isolated from the gastrointestinal system of free-range village chickens obtained from different regions of Ankara. 11 isolates with high exopolysaccharide (EPS) production capacity were selected. Biochemical and molecular identification of the selected isolates was performed and according to the identification results, it was determined that 6 isolates were Lactobacillus salivarius, 2 isolates were Lactobacillus agilis, 2 isolates were Lactobacillus reuteri and 1 isolate was Lactobacillus saerimner. EPS of 3 strains producing high EPS (L. salivarius ZDM2132, BIS312, and BIS722) were isolated from the culture medium and lyophilized. In the study, the ability of Bifidobacterium gallinarum ATCC 33777 strain to ferment lyophilized EPS (l-EPS) obtained from L. salivarius ZDM2132, BIS312 and BIS722 bacteria were determined. In addition, the effects of l-EPS the bifidogenic growth stimulator (BGD) were compared to inulin that a commercial prebiotic. l-EPSs are fermented by B. gallinarum and have been shown to show a better BGD effect than inulin.

Proje Numarası

TAGEM/15/AR-GE/40

Kaynakça

  • Referans1 Alloui, M. N., Szczurek, W., Świątkiewicz, S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition: A review. Ann Anim Sci, 13(1), 17-32.
  • Referans2 Apajalahti, J., Kettunen, A., Graham, H. (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poult Sci J, 60(2), 223-232.
  • Referans3 Badel, S., Bernardi, T., Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv, 29(1), 54-66.
  • Referans4 Bai, K., Huang, Q., Zhang, J., He, J., Zhang, L., Wang, T. (2016). Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci, 96(1), 74-82.
  • Referans5 Baldwin, S.; Hughes, R.J.; Van, T.T.H.; Moore, R.J.; Stanley, D. (2018). At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE, 13, e0194825.
  • Referans6 Bennani, S, Mchiouer, K., Rokni, Y., Meziane, M. (2017). Characterisation and identification of lactic acid bacteria isolated from Moroccan raw cow’s milk. J Mater Environ Sci, 8(S), 4934-4944.
  • Referans7 Caly, D.L.; D’Inca, R.; Auclair, E.; Drider, D. (2015). Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: A microbiologist’s perspective. Front Microbiol, 6, 1336.
  • Referans8 Chen, C. Y., Chen, S. W., Wang, H. T., (2017). Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens. Asian-Australas J Anim Sci, 30(2); 211.
  • Referans9 Clavijo, V., Flórez, M. J. V. (2017). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult Sci, 97(3), 1006-1021.
  • Referans10 El-Shall, N.A., Awad, A.M., El-Hack, M.E.A., Naiel, M.A., Othman, S.I., Allam, A.A., Sedeik, M.E. (2020). The simultaneous administration of a probiotic or prebiotic with live salmonella vaccine improves growth performance and reduces fecal shedding of the bacterium in salmonella-challenged broilers. Anim, 10, 70.
  • Referans11 Gadde, U., Kim, W.H., Oh, S.T., Lillehoj, H.S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim Health Res Rev, 18, 26–45.
  • Referans12 Halkman A. K. 2019. Gıda Mikrobiyolojisi II ders notları. Ank. Üniv. Mühendislik Fakültesi Gıda Mühendisliği Bölümü.
  • Referans13 Han, G.G., Kim, E.B., Lee, J., Lee, J.Y., Jin, G., Park, J., Huh, C.S., Kwon, I.K., Kil, D.Y., Choi, Y.J., Kong, C. (2016). Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. Springerpl, 5(1), 911.
  • Referans14 Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sanchez, B., Margolles, A. (2017). Bifidobacteria and their health-promoting effects. Microbiol Spect, 5(3).
  • Referans15 Ibrahim, R.A., Cryer, T.L., Lafi, S.Q., Basha, E., Good, L., Tarazi, Y.H. (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet Res, 15(159), 2- 16.
  • Referans16 Kıran, F., Osmanağaoğlu, Ö. (2011). Laktik asit bakterilerinin (LAB) identifikasyonunda/tiplendirmesinde kullanılan moleküler yöntemler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 27(1), 62-74.
  • Referans17 Kobierecka, P. A., Wyszyńska, A. K., Aleksandrzak-Piekarczyk, T., Kuczkowski, M., Tuzimek, A., Piotrowska, W., Jagusztyn-Krynicka, E. K. (2017). In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. Microbiol, 6(5), e00512.
  • Referans18 Korakli, M., Gänzle, M. G., Vogel, R. F. (2002). Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol, 92(5), 958-965.
  • Referans19 Madej, J.P., Stefaniak, T., Bednarczyk, M. (2015). Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs’ morphology in chickens. Poult Sci, 94, 1209–1219.
  • Referans20 Reuben R.C, Roy P.C., Sarkar S.L., Alam R., Jahid K.I. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol, 19:253.
  • Referans21 Salazar, N., Gueimonde, M., de los Reyes-Gavilan, C. G., Ruas-Madiedo, P. (2016). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr, 56(9), 1440-1453.
  • Referans22 Sarikaya, H., Aslim, B., Yuksekdag, Z. N. (2017). Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (L-EPSs) from Lactobacilli strains. Int J Food Prop, 20(2), 362-371.
  • Referans23 Shang, Y., Kumar, S., Oakley, B., Kim, W.K. (2018). Chicken gut microbiota: importance and detection technology. Fron Vet Sci. 5.
  • Referans24 Shao, Y., Zhang, W., Guo, H., Pan, L., Zhang, H., Sun, T. (2015). Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control, 50, 250-258.
  • Referans25 Tarabees, R., Gafar, K. M., EL-Sayed, M. S., Shehata, A. A., Ahmed, M. (2018). Effects of dietary supplementation of probiotic mix and prebiotic on growth performance, cecal microbiota composition, and protection against Escherichia coli O78 in broiler chickens. Probio Antimicrob Proteins, 10, 1-9.
  • Referans26 Tayeri, V., Seidavi, A., Asadpour, L., Phillips, C.J.C. (2018). A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Vet Res Commun, 42, 195–207.
  • Referans27 Toghyani, M. and Faghan, N. (2017). Effect of Sumac (Rhus Coriaria L.) Fruit powder as an antibiotic growth promoter substitution on growth performance, ımmune responses and serum lipid profile of broiler chicks. Indian J Pharm Educ Res, 51(3), S295-S298.
  • Referans28 Tsuda, H., Hara, K., Miyamoto, T. (2008). Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J Dairy Sci, 91(8), 2960-2966.
  • Referans29 Wang, J., Zhao, X., Yang, Y., Zhao, A., Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol, 74, 119-126.
  • Referans30 Yonezawa, S., Xiao, J. Z., Odamaki, T., Ishida, T., Miyaji, K., Yamada, A., Yaeshima, T., Iwatsuki, K. (2010). Improved growth of bifidobacteria by cocultivation with Lactococcus lactis subspecies lactis. J Dairy Sci, 93(5), 1815-1823.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Dilek Uzundağ 0000-0002-6256-574X

Zehranur Yuksekdag 0000-0002-0381-5876

Mustafa Uludağ Bu kişi benim 0000-0003-1976-162X

Proje Numarası TAGEM/15/AR-GE/40
Yayımlanma Tarihi 15 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 45 Sayı: 3

Kaynak Göster

APA Uzundağ, D., Yuksekdag, Z., & Uludağ, M. (2020). LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ. Gıda, 45(3), 496-505. https://doi.org/10.15237/gida.GD19150
AMA Uzundağ D, Yuksekdag Z, Uludağ M. LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ. GIDA. Haziran 2020;45(3):496-505. doi:10.15237/gida.GD19150
Chicago Uzundağ, Dilek, Zehranur Yuksekdag, ve Mustafa Uludağ. “LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ”. Gıda 45, sy. 3 (Haziran 2020): 496-505. https://doi.org/10.15237/gida.GD19150.
EndNote Uzundağ D, Yuksekdag Z, Uludağ M (01 Haziran 2020) LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ. Gıda 45 3 496–505.
IEEE D. Uzundağ, Z. Yuksekdag, ve M. Uludağ, “LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ”, GIDA, c. 45, sy. 3, ss. 496–505, 2020, doi: 10.15237/gida.GD19150.
ISNAD Uzundağ, Dilek vd. “LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ”. Gıda 45/3 (Haziran 2020), 496-505. https://doi.org/10.15237/gida.GD19150.
JAMA Uzundağ D, Yuksekdag Z, Uludağ M. LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ. GIDA. 2020;45:496–505.
MLA Uzundağ, Dilek vd. “LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ”. Gıda, c. 45, sy. 3, 2020, ss. 496-05, doi:10.15237/gida.GD19150.
Vancouver Uzundağ D, Yuksekdag Z, Uludağ M. LACTOBACILLUS CİNSİ BAKTERİLERİN LİYOFİLİZE EKZOPOLİSAKKARİTLERİNİN BİFİDOBAKTERİLERİN GELİŞİMİNİ DÜZENLEYİCİ ETKİSİNİN BELİRLENMESİ. GIDA. 2020;45(3):496-505.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/