BibTex RIS Kaynak Göster

Re-Engineering of Edible Oil Refining Wastes (Turkish with English Abstract)

Yıl 2013, Cilt: 38 Sayı: 6, 367 - 374, 01.12.2013

Öz

Edible oils can be refined by chemical and physical methods. Chemical refining consists of four steps: degumming, neutralization, bleaching and deodorization. Physical refining consists of three steps; degumming, bleaching, and simultaneous deacidification / deodorization step by using steam distillation. During refining process four groups of by-products are produced: phospholipids (Lecithin) during degumming; soapstock during neutralization; bleached earth/absorbed oil during bleaching and deodorizer distillate (sterol, tocopherol, squalene, fatty acids) during deodorization. In this study, purification of lecithin, production of acid oil from soapstock, recovery of oil from spent bleaching earth, and finally, separation and purification of fatty acids, squalene, sterol, and tocopherol from the deodorization distillate are discussed.

Kaynakça

  • Gümüflkesen AS, Yemiflçio¤lu F. 2010. Bitkisel Sıvı ve Katı Ya¤ Üretim Teknolojisi, Ege Üniversitesi Gıda Mühendisli¤i Bölümü, Meta Basım Matbaası, Bornova, ‹zmir. 224 s.
  • Shahidi, F. 2005. Bailey’s Industrial Oil And Fat Products, John Wiley & Sons, Inc. ABD. 3616 s.
  • Greyt W. 2004. Deodorization And Physical Refining, IUPAC-AOCS Workshop on Fats, Oils & Oilseeds Analyses & Production, De Smet Group Belgium.
  • Haslenda H, Jamaludin MZ. 2011. Industry to Industry By-products Exchange Network towards zero waste in palm oil refining processes. Resour Environ Biotechnol, 55, 713-718.
  • Vehre R. 2004. Influence of processing on minor components in vegetable oils, University of Ghent, Faculty of Agricultural and Applied Biological Sciences, Department of Organic Chemistry., 39 s.
  • Scholfield CR. 1981. Composition of Soybean Lecithin. J Am Oil Chem Soc. 58 (10), 889-892.
  • Griffin WC. 1954. Calculation of HLB Values of Non-Ionic Surfactants. Journal of the Society of Cosmetic Chemists 5, 249.
  • Davies JT. 1957. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity. 426-438.
  • Zeisel SH. 2003. Choline (a) Properties and Determination. In Encyclopedia of Food Sciences and Nutrition, Benjamin C (Chief ed.). Academic Press, London, pp. 1251-1254.
  • Nieuwenhuyzen W, Tomás MC. 2008, Update on vegetable lecithin and phospholipid technologies, Eur. J. Lipid Sci. Technol. 110, 472- 486.
  • Ghosh M, Bhattacharyya DK. 1997. Soy Lecithin–Monoester Interchange Reaction by Microbial Lipase. J Am Oil Chem Soc. 74 (6). 761- 763.
  • List GR, King JW, Johnson JH, Warner K, Mounts TL. 1993. Supercritical CO2Degumming and Physical Refining of Soybean Oil. Food Quality and Safety Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois 61604.
  • Manjula S, Kobayashi I, Subramanian R. 2011, Characterization of phospholipid reverse micelles in nonaqueous systems in relation to their rejection during membrane processing, Food Research International, 44, 925–930.
  • FEDIOL, 2011, Flow chart of the production chain of soybean meal and oil products for feed application in the EU, www.fediol.be, Web access: 12.02.2013.
  • Dowd MK. 1998. Gas chromatographic characterization of soapstocks from vegetable oil refining. J Chromatogr A. 816, 185-193.
  • Woerfel JB. 1982. Alternatives for Processing of Soapstock. World Conference on Oilseed and Edible Oil Processing, The Hague, Proceedings, 310-313.
  • Fazli Y, Tajdari M, Kermani P. 2013. Soap Stock Separation Process. Asian Journal Of Chemistry. 25, 2333-2334.
  • Kheang LS, Foon CS, May CY, Ngan, MA. 2006. A Study of Residual Oils Recovered from Spent Bleaching Earth:Their Characteristics and Applications. American Journal of Applied Sciences 3(10), 2063-2067.
  • Mana M, Ouali MS, Lindheimer M, Menorval LC. 2008. Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater, 159. 358-364.
  • Huang YP, Chang JI, 2010. Biodiesel production from residual oils recovered from spent bleaching earth. Renewable Energy, 35, 269-274.
  • Suppalakpanya K, Ratanawilai SB, Tongurai C. 2010. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy, 87, 2356-2359.
  • Suhartini S, Hidayat N, Wijaya S. 2011. Physical properties characterization of fuel briquette made from spent bleaching earth. Biomass Bioenergy, 35, 4209-4214.
  • Boey PL, Ganesan S, Maniam GP. 2011. Regeneration and Reutilization of Oil-Laden Spent Bleaching Clay via in Situ Transesterification and Calcination. J Am Oil Chem Soc, 88, 1247-1253.
  • Malakootian M, Fatehizadeh A, Yousefi N, Ahmadian M, Moosazadeh M. 2011. Fluoride removal using Regenerated Spent Bleaching Earth (RSBE) from groundwater: Case study on Kuhbonan water. Desalination, 277, 244-249.
  • Mana M, Ouali MS, Menorval LC, Zajac JJ, Charnay C. 2011. Regeneration of spent bleaching earth by treatment with cethyltrimethylammonium bromide for application in elimination of acid dye. Chem Eng J, 174, 275-280.
  • Nagao T, Watanabe Y, Nakano H, Shimada Y. 2013. Production and Purification of Functional Lipids Through Enzymatic and Microorganism- Mediated Processes. Current Organic Chemistry, 17 (8), 776-785.
  • Naz S, Sherazi STH, Talpur FN, Talpur MY, Kara H. 2012. Determination of Unsaponifiable Constituents of Deodorizer Distillates by GC–MS. J Am Oil Chem Soc, 89, 973-977.
  • Lin KM, Koseoglu SS. 2003. Seperation of sterols from deodorizer distillate by crystallization. Journal of Food Lipids, 10:107-127.
  • Buczenko GM, Oliveria JS, Von Meien OF. 2003. Extraction of tocopherols from the deodorized distillate of soybean oil with liquefied petroleum gas. Eur J Lipid Sci Technol. 105, 668-671.
  • Chua CLS, Baharin BS, Man YBC, Tan CP. 2007. Separation of squalene from palm fatty acid distillate using adsorption chromatography, Eur J Lipid Sci Technol, 109 (11), 1083-1087.
  • Ju YH, Huynh LH, Gunawan S, Chern YT, Kasim NS. 2012. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate. J Sep Sci, 35, 327–333.
  • Yan F, Yang H, Li J, Wang H. 2012. Optimization of Phytosterols Recovery from Soybean Oil Deodorizer Distillate. J Am Oil Chem Soc, 89, 1363-1370.
  • Isso B, Ryan D. 2012. Extraction of a-tocopherolquinone from vegetable oil deodorizer distillate waste. Eur J Lipid Sci Technol, 114, 927- 932.
  • Bondioli P, Mariani C, Lanzani A, Fedeli E, Muller A. 1993. Squalene recovery from olive oil deodorizer distillates, J Am Oil Chem Soc, 70 (8), 763-766.
  • Nagesha GK, Manohar B, Sankar KU. 2003. Enrichment of tocopherols in modified soy deodorizer distillate using supercritical carbon dioxide extraction, Eur Food Res Technol, 217, 427-433.
  • Ruivo R, Paiva A, Simões P. 2004. Phase equilibria of the ternary system methyl oleate/ squalene/carbon dioxide at high pressure conditions, J. Supercrit. Fluids, 29, 77-85.
  • Mendes MF, Pessoa FLP, Coelcho GV, Uller AMC. 2005. Recovery of the high aggregated compound present in the deodorizer distillate of the vegetable oils using supercritical fluids. J. Supercrit. Fluids, 34, 157-162.
  • Sugihara N, Kanda A, Nakano T, Nakamura T, Igusa H, Hara S. 2010. Novel Fractionation Method for Squalene and Phytosterols Contained in the Deodorization Distillate of Rice Bran Oil, Journal of Oleo Science, 59(2), 65-70.
  • Akgun NA. 2011. Separation of squalene from olive oil deodorizer distillate using supercritical fluids. Eur. J. Lipid Sci. Technol. 2011, 113, 1558- 1565.
  • Liang G, Qiao X, Bi Y, Zoua B, Zhenga Z. 2012. Studies on purification of allicin by molecular distillation. J Sci Food Agric, 92, 1475-1478.
  • Shimada Y, Nakai S, Suenaga M, Sugihara A, Kitano M, Tominaga Y. 2000. Facile Purification of Tocopherols from Soybean Oil Deodorizer Distillate in High Yield Using Lipase, J Am Oil Chem Soc, 77 (10) 1009-1013.
  • Hirota Y, Nagao T, Watanabe Y, Suenaga M, Nakai S, Kitano M, Sugihara A, Shimada Y. 2003. Purification of Steryl Esters from Soybean Oil Deodorizer Distillate, J Am Oil Chem Soc, 80 (4) 341-346.
  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. 2005. H2 and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process, J Biosci Bioeng, 100 (3) 260-265.
  • Martins PF, Ito VM, Batistella CB, Maciel MRW. 2006. Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Separation and Purification Technology, 48, 78-84.
  • Meyer F, Eggers R, Oehlke K, Harbaum-Piayda B, Schwarz K, Siddiqi MA. 2011. Application of short path distillation for recovery of polyphenols from deodorizer distillate. Eur. J. Lipid Sci. Technol. 113, 1363-1374.
  • Nagesha GK, Subramanian R, Sankar KU. 2003. Processing of Tocopherol and FA Systems Using a Nonporous Denser Polymeric Membrane, J Am Oil Chem Soc. 80, 397-402.
  • Teixeira ARS, Santos JLC, Crespo JG. 2012. Lipase-Catalyzed Consecutive Batch Reaction for Production of Steryl Esters from Vegetable Oil Deodorizer Distillates. Ind. Eng. Chem. Res. 51, 5443-5455.
  • Nagao T, Kobayashi T, Hirota Y, Kitano M, Kishimoto C, Fujita T. 2005. Improvement of a process for purification of tocopherols and sterols from soybean oil deodorizer distillate. J Mol Catal B Enzym, 37, 56-62.
  • Ramamurthi S, Mc Curdy AR. 1993. Enzymatic Pretreatment of Deodorizer Distillate for Concentration of Sterols and Tocopherols. J Am Oil Chem Soc, 70(3), 287-295.

Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu

Yıl 2013, Cilt: 38 Sayı: 6, 367 - 374, 01.12.2013

Öz

Serbest radikaller son yörüngelerinde eşlenmemiş elektron bulunduran süperoksit anyonu ve hidroksil radikali gibi aşırı reaktif kimyasal yapılardır. Serbest radikaller vücutta solunum gibi normal metabolik faaliyetler sırasında oluşarak fizyolojik düzeyde faydalı olurken; aşırı spor, enfeksiyon, radyasyon, sigara içme ve serbest radikallerce zengin gıda ile beslenme gibi olumsuz dış etkenler nedeniyle patolojik seviyeye ulaşırsa; diyabet, katarakt, kanser, kalp-damar rahatsızlıkları ve Alzheimer gibi hastalıkların oluşumuna neden olabilmektedirler. Hammaddelerde çok düşük miktarlarda bulunan serbest radikalerin miktarı gıdalara uygulanan dezenfeksiyon, boyut küçültme, ısıl işlem ve katkılama gibi işleme teknikleriyle artmaktadır. Özellikle oksijenli ortamlarda yüzey alanının artması ve yüksek sıcaklık uygulaması gıdaların oksijen bazlı serbest radikal içeriğini artırmaktadır. Hastalıkların oluşmasını önlemede ve kaliteli bir hayat sürmede en önemli önleyici faktörlerden biri de gıda güvenliğinin sağlanması ve doğru beslenmedir. Sonuç olarak gıdaların serbest radikal içeriklerini artıran aşırı işlemeden kaçınılması ve minimal işlem tekniklerin kullanılması toplum sağlığının koruması bakımından oldukça önemlidir.

Kaynakça

  • Gümüflkesen AS, Yemiflçio¤lu F. 2010. Bitkisel Sıvı ve Katı Ya¤ Üretim Teknolojisi, Ege Üniversitesi Gıda Mühendisli¤i Bölümü, Meta Basım Matbaası, Bornova, ‹zmir. 224 s.
  • Shahidi, F. 2005. Bailey’s Industrial Oil And Fat Products, John Wiley & Sons, Inc. ABD. 3616 s.
  • Greyt W. 2004. Deodorization And Physical Refining, IUPAC-AOCS Workshop on Fats, Oils & Oilseeds Analyses & Production, De Smet Group Belgium.
  • Haslenda H, Jamaludin MZ. 2011. Industry to Industry By-products Exchange Network towards zero waste in palm oil refining processes. Resour Environ Biotechnol, 55, 713-718.
  • Vehre R. 2004. Influence of processing on minor components in vegetable oils, University of Ghent, Faculty of Agricultural and Applied Biological Sciences, Department of Organic Chemistry., 39 s.
  • Scholfield CR. 1981. Composition of Soybean Lecithin. J Am Oil Chem Soc. 58 (10), 889-892.
  • Griffin WC. 1954. Calculation of HLB Values of Non-Ionic Surfactants. Journal of the Society of Cosmetic Chemists 5, 249.
  • Davies JT. 1957. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity. 426-438.
  • Zeisel SH. 2003. Choline (a) Properties and Determination. In Encyclopedia of Food Sciences and Nutrition, Benjamin C (Chief ed.). Academic Press, London, pp. 1251-1254.
  • Nieuwenhuyzen W, Tomás MC. 2008, Update on vegetable lecithin and phospholipid technologies, Eur. J. Lipid Sci. Technol. 110, 472- 486.
  • Ghosh M, Bhattacharyya DK. 1997. Soy Lecithin–Monoester Interchange Reaction by Microbial Lipase. J Am Oil Chem Soc. 74 (6). 761- 763.
  • List GR, King JW, Johnson JH, Warner K, Mounts TL. 1993. Supercritical CO2Degumming and Physical Refining of Soybean Oil. Food Quality and Safety Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois 61604.
  • Manjula S, Kobayashi I, Subramanian R. 2011, Characterization of phospholipid reverse micelles in nonaqueous systems in relation to their rejection during membrane processing, Food Research International, 44, 925–930.
  • FEDIOL, 2011, Flow chart of the production chain of soybean meal and oil products for feed application in the EU, www.fediol.be, Web access: 12.02.2013.
  • Dowd MK. 1998. Gas chromatographic characterization of soapstocks from vegetable oil refining. J Chromatogr A. 816, 185-193.
  • Woerfel JB. 1982. Alternatives for Processing of Soapstock. World Conference on Oilseed and Edible Oil Processing, The Hague, Proceedings, 310-313.
  • Fazli Y, Tajdari M, Kermani P. 2013. Soap Stock Separation Process. Asian Journal Of Chemistry. 25, 2333-2334.
  • Kheang LS, Foon CS, May CY, Ngan, MA. 2006. A Study of Residual Oils Recovered from Spent Bleaching Earth:Their Characteristics and Applications. American Journal of Applied Sciences 3(10), 2063-2067.
  • Mana M, Ouali MS, Lindheimer M, Menorval LC. 2008. Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater, 159. 358-364.
  • Huang YP, Chang JI, 2010. Biodiesel production from residual oils recovered from spent bleaching earth. Renewable Energy, 35, 269-274.
  • Suppalakpanya K, Ratanawilai SB, Tongurai C. 2010. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy, 87, 2356-2359.
  • Suhartini S, Hidayat N, Wijaya S. 2011. Physical properties characterization of fuel briquette made from spent bleaching earth. Biomass Bioenergy, 35, 4209-4214.
  • Boey PL, Ganesan S, Maniam GP. 2011. Regeneration and Reutilization of Oil-Laden Spent Bleaching Clay via in Situ Transesterification and Calcination. J Am Oil Chem Soc, 88, 1247-1253.
  • Malakootian M, Fatehizadeh A, Yousefi N, Ahmadian M, Moosazadeh M. 2011. Fluoride removal using Regenerated Spent Bleaching Earth (RSBE) from groundwater: Case study on Kuhbonan water. Desalination, 277, 244-249.
  • Mana M, Ouali MS, Menorval LC, Zajac JJ, Charnay C. 2011. Regeneration of spent bleaching earth by treatment with cethyltrimethylammonium bromide for application in elimination of acid dye. Chem Eng J, 174, 275-280.
  • Nagao T, Watanabe Y, Nakano H, Shimada Y. 2013. Production and Purification of Functional Lipids Through Enzymatic and Microorganism- Mediated Processes. Current Organic Chemistry, 17 (8), 776-785.
  • Naz S, Sherazi STH, Talpur FN, Talpur MY, Kara H. 2012. Determination of Unsaponifiable Constituents of Deodorizer Distillates by GC–MS. J Am Oil Chem Soc, 89, 973-977.
  • Lin KM, Koseoglu SS. 2003. Seperation of sterols from deodorizer distillate by crystallization. Journal of Food Lipids, 10:107-127.
  • Buczenko GM, Oliveria JS, Von Meien OF. 2003. Extraction of tocopherols from the deodorized distillate of soybean oil with liquefied petroleum gas. Eur J Lipid Sci Technol. 105, 668-671.
  • Chua CLS, Baharin BS, Man YBC, Tan CP. 2007. Separation of squalene from palm fatty acid distillate using adsorption chromatography, Eur J Lipid Sci Technol, 109 (11), 1083-1087.
  • Ju YH, Huynh LH, Gunawan S, Chern YT, Kasim NS. 2012. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate. J Sep Sci, 35, 327–333.
  • Yan F, Yang H, Li J, Wang H. 2012. Optimization of Phytosterols Recovery from Soybean Oil Deodorizer Distillate. J Am Oil Chem Soc, 89, 1363-1370.
  • Isso B, Ryan D. 2012. Extraction of a-tocopherolquinone from vegetable oil deodorizer distillate waste. Eur J Lipid Sci Technol, 114, 927- 932.
  • Bondioli P, Mariani C, Lanzani A, Fedeli E, Muller A. 1993. Squalene recovery from olive oil deodorizer distillates, J Am Oil Chem Soc, 70 (8), 763-766.
  • Nagesha GK, Manohar B, Sankar KU. 2003. Enrichment of tocopherols in modified soy deodorizer distillate using supercritical carbon dioxide extraction, Eur Food Res Technol, 217, 427-433.
  • Ruivo R, Paiva A, Simões P. 2004. Phase equilibria of the ternary system methyl oleate/ squalene/carbon dioxide at high pressure conditions, J. Supercrit. Fluids, 29, 77-85.
  • Mendes MF, Pessoa FLP, Coelcho GV, Uller AMC. 2005. Recovery of the high aggregated compound present in the deodorizer distillate of the vegetable oils using supercritical fluids. J. Supercrit. Fluids, 34, 157-162.
  • Sugihara N, Kanda A, Nakano T, Nakamura T, Igusa H, Hara S. 2010. Novel Fractionation Method for Squalene and Phytosterols Contained in the Deodorization Distillate of Rice Bran Oil, Journal of Oleo Science, 59(2), 65-70.
  • Akgun NA. 2011. Separation of squalene from olive oil deodorizer distillate using supercritical fluids. Eur. J. Lipid Sci. Technol. 2011, 113, 1558- 1565.
  • Liang G, Qiao X, Bi Y, Zoua B, Zhenga Z. 2012. Studies on purification of allicin by molecular distillation. J Sci Food Agric, 92, 1475-1478.
  • Shimada Y, Nakai S, Suenaga M, Sugihara A, Kitano M, Tominaga Y. 2000. Facile Purification of Tocopherols from Soybean Oil Deodorizer Distillate in High Yield Using Lipase, J Am Oil Chem Soc, 77 (10) 1009-1013.
  • Hirota Y, Nagao T, Watanabe Y, Suenaga M, Nakai S, Kitano M, Sugihara A, Shimada Y. 2003. Purification of Steryl Esters from Soybean Oil Deodorizer Distillate, J Am Oil Chem Soc, 80 (4) 341-346.
  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. 2005. H2 and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process, J Biosci Bioeng, 100 (3) 260-265.
  • Martins PF, Ito VM, Batistella CB, Maciel MRW. 2006. Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Separation and Purification Technology, 48, 78-84.
  • Meyer F, Eggers R, Oehlke K, Harbaum-Piayda B, Schwarz K, Siddiqi MA. 2011. Application of short path distillation for recovery of polyphenols from deodorizer distillate. Eur. J. Lipid Sci. Technol. 113, 1363-1374.
  • Nagesha GK, Subramanian R, Sankar KU. 2003. Processing of Tocopherol and FA Systems Using a Nonporous Denser Polymeric Membrane, J Am Oil Chem Soc. 80, 397-402.
  • Teixeira ARS, Santos JLC, Crespo JG. 2012. Lipase-Catalyzed Consecutive Batch Reaction for Production of Steryl Esters from Vegetable Oil Deodorizer Distillates. Ind. Eng. Chem. Res. 51, 5443-5455.
  • Nagao T, Kobayashi T, Hirota Y, Kitano M, Kishimoto C, Fujita T. 2005. Improvement of a process for purification of tocopherols and sterols from soybean oil deodorizer distillate. J Mol Catal B Enzym, 37, 56-62.
  • Ramamurthi S, Mc Curdy AR. 1993. Enzymatic Pretreatment of Deodorizer Distillate for Concentration of Sterols and Tocopherols. J Am Oil Chem Soc, 70(3), 287-295.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fahri Yemişçioğlu Bu kişi benim

Mustafa Erbaş Bu kişi benim

Onur Özdikicierler Bu kişi benim

Hanife Şekerci Bu kişi benim

Aytaç Saygın Gümüşkesen Bu kişi benim

Ayşegül Ermek Sönmez Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 38 Sayı: 6

Kaynak Göster

APA Yemişçioğlu, F. ., Erbaş, M., Özdikicierler, O. ., Şekerci, H., vd. (2013). Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu. Gıda, 38(6), 367-374.
AMA Yemişçioğlu F, Erbaş M, Özdikicierler O, Şekerci H, Gümüşkesen AS, Sönmez AE. Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu. GIDA. Aralık 2013;38(6):367-374.
Chicago Yemişçioğlu, Fahri, Mustafa Erbaş, Onur Özdikicierler, Hanife Şekerci, Aytaç Saygın Gümüşkesen, ve Ayşegül Ermek Sönmez. “Serbest Radikallerin Önemi Ve Gıda İşleme Sırasında Oluşumu”. Gıda 38, sy. 6 (Aralık 2013): 367-74.
EndNote Yemişçioğlu F, Erbaş M, Özdikicierler O, Şekerci H, Gümüşkesen AS, Sönmez AE (01 Aralık 2013) Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu. Gıda 38 6 367–374.
IEEE F. . Yemişçioğlu, M. Erbaş, O. . Özdikicierler, H. Şekerci, A. S. . Gümüşkesen, ve A. E. . Sönmez, “Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu”, GIDA, c. 38, sy. 6, ss. 367–374, 2013.
ISNAD Yemişçioğlu, Fahri vd. “Serbest Radikallerin Önemi Ve Gıda İşleme Sırasında Oluşumu”. Gıda 38/6 (Aralık 2013), 367-374.
JAMA Yemişçioğlu F, Erbaş M, Özdikicierler O, Şekerci H, Gümüşkesen AS, Sönmez AE. Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu. GIDA. 2013;38:367–374.
MLA Yemişçioğlu, Fahri vd. “Serbest Radikallerin Önemi Ve Gıda İşleme Sırasında Oluşumu”. Gıda, c. 38, sy. 6, 2013, ss. 367-74.
Vancouver Yemişçioğlu F, Erbaş M, Özdikicierler O, Şekerci H, Gümüşkesen AS, Sönmez AE. Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu. GIDA. 2013;38(6):367-74.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/