BibTex RIS Kaynak Göster

Food Authenticity and Control Methods (Turkish with English Abstract)

Yıl 2014, Cilt: 39 Sayı: 5, 315 - 322, 01.10.2014
https://doi.org/10.15237/gida.GD14017

Öz

Food authenticity is a subject that is important not only for consumer protection, but also for maintaining fair competition. This term defines whether a food carries its own characteristics or not. These characteristics can be associated with the origin of the food (region, varieties etc.), production method or composition of the food (adulteration, fraudulent etc.). In order to ensure the food authenticity, identification of control criteria and validated analytical methods are required primarily. Moreover new applications in the field of food authenticity must be developed depending on the improvements in the technique of adulteration. This review focuses on the basic analytical methods used for food authenticity control (spectrophotometric, electrophoretic, electronic, DNA-based, immunological) and its application areas.

Kaynakça

  • Downey G. 1998. Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics. Trends Anal Chem, 17(7), 418-424. 2. John Dennis M. 1998. Recent developments in food authentication. Analyst, 123(9), 151-156.
  • Christy AA, Kasemsumran S, Du Y, Ozakı Y. 2004. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Anal Sci, 20(6), 935-940.
  • Miralbes C. 2008. Discrimination of European wheat varieties using near infrared reflectance spectroscopy. Food Chem, 106(1), 386-389.
  • Ding H, Xu R. 2000. Near-infrared spectroscopic technique for detection of beef hamburger adulteration. J Agric Food Chem, 48(6), 2193-2198. 9. Zhu X, Li S, Shan Y, Zhang Z, Li G, Su D, Liu F. 2010. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J Food Eng, 101(1), 92-97.
  • León L, Kelly JD, Downey G. 2005. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. Appl spectrosc, 59(5), 593-599.
  • Reid LM, Woodcock T, O’Donnell CP, Kelly JD, Downey G. 2005. Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data. Food Res Int, 38(10), 1109-1115.
  • Kılıc GB, Karahan AG, 2010. Fourier dönüflümlü kızılötesi (FTIR) spektroskopisi ve laktik asit bakterilerinin tanısında kullanılması. GIDA, 35(6), 445-452.
  • Al-Jowder O, Kemsley E, Wilson RH. 2002. Detection of adulteration in cooked meat products by mid-infrared spectroscopy. J Agric Food Chem, 50(6), 1325-1329.
  • Camps C, Robic R, Bruneau M, Laurens F. 2010. Rapid determination of soluble solids content and acidity of Black currant (Ribes nigrum L.) juice by mid-infrared spectroscopy performed in series. LWT - Food Sci Technol, 43(7), 1164-1167.
  • Holland J, Kemsley E, Wilson R. 1998. Use of Fourier transform infrared spectroscopy and partial least squares regression for the detection of adulteration of strawberry purees. J Sci Food Agric, 76(2), 263-269.
  • Uysal RS, Boyaci IH, Genis HE, Tamer U. 2013. Determination of butter adulteration with margarine using Raman spectroscopy. Food Chem, 141(4), 4397-4403.
  • López-Díez EC, Bianchi G, Goodacre R. 2003. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. J Agric Food Chem, 51(21), 6145-6150.
  • Zou M-Q, Zhang X-F, Qi X-H, Ma H-L, Dong Y, Liu C-W, Guo X, Wang H. 2009. Rapid authentication of olive oil adulteration by Raman spectrometry. J Agric Food Chem, 57(14), 6001-6006. 22. Zhang X, Qi X, Zou M, Liu F. 2011. Rapid authentication of olive oil by Raman spectroscopy using principal component analysis. Anal Lett, 44(12), 2209-2220.
  • Boyacı ‹H, Temiz HT, Uysal RS, Velio¤lu HM, Yadegari RJ, Rishkan MM. 2014. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chem, 148, 37-41.
  • Goodacre R, Radovic BS, Anklam E. 2002. Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy. Appl Spectrosc, 56(4), 521-527.
  • Li S, Shan Y, Zhu X, Zhang X, Ling G. 2012. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J Food Compos Anal, 28(1), 69-74. 26. Marigheto NA, Kemsley EK, Defernez M, Wilson RH. 1998. A comparison of mid-infrared and Raman spectroscopies for the authentication of edible oils. J Am Oil Chem Soc, 75(8), 987-992.
  • Ghidini S, Ianieri A, Zanardi E, Conter M, Boschetti T, Iacumin P, Bracchi PG. 2006. Stable isotopes determination in food authentication: A review. Ann. Fac. Medic. Vet. di Parma XXVI, 193-204.
  • Rossmann A. 2001. Determination of stable isotope ratios in food analysis. Food Rev Int, 17(3), 347-381.
  • Angerosa F, Breas O, Contento S, Guillou C, Reniero F, Sada E. 1999. Application of stable isotope ratio analysis to the characterization of the geographical origin of olive oils. J Agric Food Chem, 47(3), 1013-1017.
  • Calderone G, Guillou C. 2008. Analysis of isotopic ratios for the detection of illegal watering of beverages. Food Chem, 106(4), 1399-1405.
  • Yorulmaz A, Tekin A. 2006. Zeytinya¤ına yapılan ta¤flifllerin belirlenmesinde kullanılan yöntemler. Türkiye 9. Gıda Kongresi, 24-26 Mayıs, Bolu, Türkiye,795.
  • Toprak F, Karaali A. 2007. Zeytinya¤ında co¤rafi iflaretlemeye temel oluflturabilecek otantisite analizleri. Dünya Gıda, 4.
  • Duru N, Karadeniz F. 2007. Meyve sularında hilelerin saptanmasında yararlanılan bafllıca kriterler. Dünya Gıda, 7, 40-46.
  • Eksi A, Karav S. 2011. Sorbitol/xylitol level in fruit juices obtained from different fruit species and its importance in terms of authenticity control. Fruit Processing, 21(3), 94-97.
  • Prodolliet J, Hischenhuber C. 1998. Food authentication by carbohydrate chromatography. Z Lebens Unters For, 207(1), 1-12.
  • Özatay Ş. 2012. Moleküler metotların gıda kontrollerindeki uygulama alanları. Derleme, 5(1), 75-81.
  • Mafra I, Ferreira IPLVO, Oliveira MBP. 2008. Food authentication by PCR-based methods. Eur Food Res Technol, 227(3), 649-665.
  • Kitpipit T, Sittichan K, Thanakiatkrai P. 2013. Are these food products fraudulent? Rapid and novel triplex-direct PCR assay for meat identification. Forensic Sci Int, 4(1), 33-43.
  • Cammà C, Di Domenico M, Monaco F. 2012. Development and validation of fast Real-Time PCR assays for species identification in raw and cooked meat mixtures. Food Control, 23(2), 400-404.
  • Ulca P, Balta H, Ça¤ın ‹, Senyuva HZ. 2013. Meat species identification and Halal authentication using PCR analysis of raw and cooked traditional Turkish foods. Meat Sci, 94(3), 280-284.
  • Zhang C. 2013. Semi-nested multiplex PCR enhanced method sensitivity of species detection in further-processed meats. Food Control, 31(2), 326-330. 45. Bazakos C, Dulger AO, Uncu AT, Spaniolas S, Spano T, Kalaitzis P. 2012. A SNP-based PCR-RFLP capillary electrophoresis analysis for the identification of the varietal origin of olive oils. Food Chem, 134(4), 2411-8.
  • Giménez MJ, Pistón F, Martín A, Atienza SG. 2010. Application of real-time PCR on the development of molecular markers and to evaluate critical aspects for olive oil authentication. Food Chem, 118(2), 482-487.
  • Vietina M, Agrimonti C, Marmiroli N. 2013. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: A tool for disclosure of olive oil adulteration. Food Chem, 141(4), 3820-6.
  • Pereira L, Guedes-Pinto H, Martins-Lopes P. 2011. An enhanced method for Vitis vinifera L. DNA extraction from wines. Am J Enol Vitic, 62(4), 547-552.
  • Mininni AN, Pellizzari C, Cardazzo B, Carraro L, Balzan S, Novelli E. 2009. Evaluation of real-time PCR assays for detection and quantification of fraudulent addition of bovine milk to caprine and ovine milk for cheese manufacture. Int Dairy J, 19(10), 617-623.
  • Yetiflmeyen A. 1999. ‹mmünolojik test yöntemlerinin süt sanayiinde kullanımı. GIDA, 24(1), 41-45.
  • Whittaker RG, Spencer TL, Copland JW. 1983. An enzyme-linked immunosorbent assay for species identification of raw meat. J Sci Food Agric, 34(10), 1143-8.
  • Martin DR, Chan J, Chiu JY. 1998. Quantitative evaluation of pork adulteration in raw ground beef by radial immunodiffusion and enzyme-linked immunosorbent assay. J Food Prot, 61(12), 1686-90. 53. Macedo-Silva A, Barbosa SFC, Alkmin MGA, Vaz AJ, Shimokomaki M, Tenuta-Filho A. 2000. Hamburger meat identification by dot-ELISA. Meat Sci, 56(2), 189-192.
  • Ekici K, Akyüz N. 2003. Farklı hayvan türlerine ait çi¤ etlerin SDS-PAGE yöntemiyle belirlenmesi üzerine bir arafltırma. YYÜ Vet Fak Derg, 14(2), 78-82. 58. Gönülalan Z, Arslan A. 2001. Beyaz peynir bileflimine giren süt türlerinin poliakrilamid jel elektroforezi ile saptanması. Kafkas Üniv Vet Fak Derg, 7(1), 39-45.
  • Kızıl Ü, Genç L, Saçan M. 2011. Elektronik burun sistemlerinin tasarım ilkeleri. Uluda¤ Üniv Zir Fak Derg, 25(1), 109-118.
  • Bayındır M, Yaman M, Yıldırım A. 2011. Koku bilimine do¤ru elektronik ve fotonik burunlar. Bilim ve Teknik, 9, 34-39.
  • Dias LA, Peres AM, Veloso ACA, Reis FS, Vilas-Boas M, Machado AASC. 2009. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors Actuat B- Chem, 136(1), 209-217.
  • Tian X, Wang J, Cui S. 2013. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J Food Eng, 119(4), 744-749.
  • Hai Z, Wang J. 2006. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors Actuat B- Chem, 119(2), 449- 455.
  • Hong X, Wang J. 2014. Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. J Food Eng, 126, 89-97.
  • Simpkins W, Harrison M. 1995. The state of art in authenticity testing. Trends Food Sci Tech, 6, 321-328.
  • Ironzo JR. 1972. Chemische Kennwerte zur Aufdeckung von Verfaelschungen bei Orangensaft. Flüssiges Obst, 40, 493-495.
  • Şekil 1. p-Nitrofenil propiyonat substratının hidrolizi ile p-nitrofenol (pKa 7.2) ve propiyonik asit oluflumu.
  • Figure 1. Hydrolysis of p-nitrophenyl propionate to p-nitrophenol (pKa 7.2) ve propionic acid.

Gıda Gerçekliği ve Kontrol Yöntemleri

Yıl 2014, Cilt: 39 Sayı: 5, 315 - 322, 01.10.2014
https://doi.org/10.15237/gida.GD14017

Öz

Gıda gerçekliği tüketicinin korunması ve adil rekabetin sürdürülmesi açısından oldukça önemlidir. Bu kavram kısaca, bir gıdanın kendisine özgü özellikleri taşıyıp taşımadığını tanımlamaktadır. Bu özellikler gıdanın kökeni (bölge, çeşit vb.), üretim yöntemi veya gıdanın bileşimi (taklit, tağşiş vb.) ile ilişkili olabilmektedir. Gıda gerçekliğinin sağlanması için öncelikle kontrol kriterlerinin ve geçerli analiz yöntemlerinin tanımlanması gereklidir. Ayrıca hile tekniğindeki gelişmelere bağlı olarak kontrol yöntemlerinin de zamanla geliştirilmesi zorunludur. Bu derleme, gıda gerçekliğinin kontrolü için kullanılan başlıca analiz tekniklerine (spektrofotometrik, elektroforetik, elektronik, DNA temelli, immünolojik) ve uygulama alanlarına odaklanmaktadır.

Kaynakça

  • Downey G. 1998. Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics. Trends Anal Chem, 17(7), 418-424. 2. John Dennis M. 1998. Recent developments in food authentication. Analyst, 123(9), 151-156.
  • Christy AA, Kasemsumran S, Du Y, Ozakı Y. 2004. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Anal Sci, 20(6), 935-940.
  • Miralbes C. 2008. Discrimination of European wheat varieties using near infrared reflectance spectroscopy. Food Chem, 106(1), 386-389.
  • Ding H, Xu R. 2000. Near-infrared spectroscopic technique for detection of beef hamburger adulteration. J Agric Food Chem, 48(6), 2193-2198. 9. Zhu X, Li S, Shan Y, Zhang Z, Li G, Su D, Liu F. 2010. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J Food Eng, 101(1), 92-97.
  • León L, Kelly JD, Downey G. 2005. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. Appl spectrosc, 59(5), 593-599.
  • Reid LM, Woodcock T, O’Donnell CP, Kelly JD, Downey G. 2005. Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data. Food Res Int, 38(10), 1109-1115.
  • Kılıc GB, Karahan AG, 2010. Fourier dönüflümlü kızılötesi (FTIR) spektroskopisi ve laktik asit bakterilerinin tanısında kullanılması. GIDA, 35(6), 445-452.
  • Al-Jowder O, Kemsley E, Wilson RH. 2002. Detection of adulteration in cooked meat products by mid-infrared spectroscopy. J Agric Food Chem, 50(6), 1325-1329.
  • Camps C, Robic R, Bruneau M, Laurens F. 2010. Rapid determination of soluble solids content and acidity of Black currant (Ribes nigrum L.) juice by mid-infrared spectroscopy performed in series. LWT - Food Sci Technol, 43(7), 1164-1167.
  • Holland J, Kemsley E, Wilson R. 1998. Use of Fourier transform infrared spectroscopy and partial least squares regression for the detection of adulteration of strawberry purees. J Sci Food Agric, 76(2), 263-269.
  • Uysal RS, Boyaci IH, Genis HE, Tamer U. 2013. Determination of butter adulteration with margarine using Raman spectroscopy. Food Chem, 141(4), 4397-4403.
  • López-Díez EC, Bianchi G, Goodacre R. 2003. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. J Agric Food Chem, 51(21), 6145-6150.
  • Zou M-Q, Zhang X-F, Qi X-H, Ma H-L, Dong Y, Liu C-W, Guo X, Wang H. 2009. Rapid authentication of olive oil adulteration by Raman spectrometry. J Agric Food Chem, 57(14), 6001-6006. 22. Zhang X, Qi X, Zou M, Liu F. 2011. Rapid authentication of olive oil by Raman spectroscopy using principal component analysis. Anal Lett, 44(12), 2209-2220.
  • Boyacı ‹H, Temiz HT, Uysal RS, Velio¤lu HM, Yadegari RJ, Rishkan MM. 2014. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chem, 148, 37-41.
  • Goodacre R, Radovic BS, Anklam E. 2002. Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy. Appl Spectrosc, 56(4), 521-527.
  • Li S, Shan Y, Zhu X, Zhang X, Ling G. 2012. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J Food Compos Anal, 28(1), 69-74. 26. Marigheto NA, Kemsley EK, Defernez M, Wilson RH. 1998. A comparison of mid-infrared and Raman spectroscopies for the authentication of edible oils. J Am Oil Chem Soc, 75(8), 987-992.
  • Ghidini S, Ianieri A, Zanardi E, Conter M, Boschetti T, Iacumin P, Bracchi PG. 2006. Stable isotopes determination in food authentication: A review. Ann. Fac. Medic. Vet. di Parma XXVI, 193-204.
  • Rossmann A. 2001. Determination of stable isotope ratios in food analysis. Food Rev Int, 17(3), 347-381.
  • Angerosa F, Breas O, Contento S, Guillou C, Reniero F, Sada E. 1999. Application of stable isotope ratio analysis to the characterization of the geographical origin of olive oils. J Agric Food Chem, 47(3), 1013-1017.
  • Calderone G, Guillou C. 2008. Analysis of isotopic ratios for the detection of illegal watering of beverages. Food Chem, 106(4), 1399-1405.
  • Yorulmaz A, Tekin A. 2006. Zeytinya¤ına yapılan ta¤flifllerin belirlenmesinde kullanılan yöntemler. Türkiye 9. Gıda Kongresi, 24-26 Mayıs, Bolu, Türkiye,795.
  • Toprak F, Karaali A. 2007. Zeytinya¤ında co¤rafi iflaretlemeye temel oluflturabilecek otantisite analizleri. Dünya Gıda, 4.
  • Duru N, Karadeniz F. 2007. Meyve sularında hilelerin saptanmasında yararlanılan bafllıca kriterler. Dünya Gıda, 7, 40-46.
  • Eksi A, Karav S. 2011. Sorbitol/xylitol level in fruit juices obtained from different fruit species and its importance in terms of authenticity control. Fruit Processing, 21(3), 94-97.
  • Prodolliet J, Hischenhuber C. 1998. Food authentication by carbohydrate chromatography. Z Lebens Unters For, 207(1), 1-12.
  • Özatay Ş. 2012. Moleküler metotların gıda kontrollerindeki uygulama alanları. Derleme, 5(1), 75-81.
  • Mafra I, Ferreira IPLVO, Oliveira MBP. 2008. Food authentication by PCR-based methods. Eur Food Res Technol, 227(3), 649-665.
  • Kitpipit T, Sittichan K, Thanakiatkrai P. 2013. Are these food products fraudulent? Rapid and novel triplex-direct PCR assay for meat identification. Forensic Sci Int, 4(1), 33-43.
  • Cammà C, Di Domenico M, Monaco F. 2012. Development and validation of fast Real-Time PCR assays for species identification in raw and cooked meat mixtures. Food Control, 23(2), 400-404.
  • Ulca P, Balta H, Ça¤ın ‹, Senyuva HZ. 2013. Meat species identification and Halal authentication using PCR analysis of raw and cooked traditional Turkish foods. Meat Sci, 94(3), 280-284.
  • Zhang C. 2013. Semi-nested multiplex PCR enhanced method sensitivity of species detection in further-processed meats. Food Control, 31(2), 326-330. 45. Bazakos C, Dulger AO, Uncu AT, Spaniolas S, Spano T, Kalaitzis P. 2012. A SNP-based PCR-RFLP capillary electrophoresis analysis for the identification of the varietal origin of olive oils. Food Chem, 134(4), 2411-8.
  • Giménez MJ, Pistón F, Martín A, Atienza SG. 2010. Application of real-time PCR on the development of molecular markers and to evaluate critical aspects for olive oil authentication. Food Chem, 118(2), 482-487.
  • Vietina M, Agrimonti C, Marmiroli N. 2013. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: A tool for disclosure of olive oil adulteration. Food Chem, 141(4), 3820-6.
  • Pereira L, Guedes-Pinto H, Martins-Lopes P. 2011. An enhanced method for Vitis vinifera L. DNA extraction from wines. Am J Enol Vitic, 62(4), 547-552.
  • Mininni AN, Pellizzari C, Cardazzo B, Carraro L, Balzan S, Novelli E. 2009. Evaluation of real-time PCR assays for detection and quantification of fraudulent addition of bovine milk to caprine and ovine milk for cheese manufacture. Int Dairy J, 19(10), 617-623.
  • Yetiflmeyen A. 1999. ‹mmünolojik test yöntemlerinin süt sanayiinde kullanımı. GIDA, 24(1), 41-45.
  • Whittaker RG, Spencer TL, Copland JW. 1983. An enzyme-linked immunosorbent assay for species identification of raw meat. J Sci Food Agric, 34(10), 1143-8.
  • Martin DR, Chan J, Chiu JY. 1998. Quantitative evaluation of pork adulteration in raw ground beef by radial immunodiffusion and enzyme-linked immunosorbent assay. J Food Prot, 61(12), 1686-90. 53. Macedo-Silva A, Barbosa SFC, Alkmin MGA, Vaz AJ, Shimokomaki M, Tenuta-Filho A. 2000. Hamburger meat identification by dot-ELISA. Meat Sci, 56(2), 189-192.
  • Ekici K, Akyüz N. 2003. Farklı hayvan türlerine ait çi¤ etlerin SDS-PAGE yöntemiyle belirlenmesi üzerine bir arafltırma. YYÜ Vet Fak Derg, 14(2), 78-82. 58. Gönülalan Z, Arslan A. 2001. Beyaz peynir bileflimine giren süt türlerinin poliakrilamid jel elektroforezi ile saptanması. Kafkas Üniv Vet Fak Derg, 7(1), 39-45.
  • Kızıl Ü, Genç L, Saçan M. 2011. Elektronik burun sistemlerinin tasarım ilkeleri. Uluda¤ Üniv Zir Fak Derg, 25(1), 109-118.
  • Bayındır M, Yaman M, Yıldırım A. 2011. Koku bilimine do¤ru elektronik ve fotonik burunlar. Bilim ve Teknik, 9, 34-39.
  • Dias LA, Peres AM, Veloso ACA, Reis FS, Vilas-Boas M, Machado AASC. 2009. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors Actuat B- Chem, 136(1), 209-217.
  • Tian X, Wang J, Cui S. 2013. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J Food Eng, 119(4), 744-749.
  • Hai Z, Wang J. 2006. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors Actuat B- Chem, 119(2), 449- 455.
  • Hong X, Wang J. 2014. Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. J Food Eng, 126, 89-97.
  • Simpkins W, Harrison M. 1995. The state of art in authenticity testing. Trends Food Sci Tech, 6, 321-328.
  • Ironzo JR. 1972. Chemische Kennwerte zur Aufdeckung von Verfaelschungen bei Orangensaft. Flüssiges Obst, 40, 493-495.
  • Şekil 1. p-Nitrofenil propiyonat substratının hidrolizi ile p-nitrofenol (pKa 7.2) ve propiyonik asit oluflumu.
  • Figure 1. Hydrolysis of p-nitrophenyl propionate to p-nitrophenol (pKa 7.2) ve propionic acid.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Gülen Yeşilören Bu kişi benim

Aziz Ekşi Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 39 Sayı: 5

Kaynak Göster

APA Yeşilören, G. ., & Ekşi, A. . (2014). Gıda Gerçekliği ve Kontrol Yöntemleri. Gıda, 39(5), 315-322. https://doi.org/10.15237/gida.GD14017
AMA Yeşilören G, Ekşi A. Gıda Gerçekliği ve Kontrol Yöntemleri. GIDA. Ekim 2014;39(5):315-322. doi:10.15237/gida.GD14017
Chicago Yeşilören, Gülen, ve Aziz Ekşi. “Gıda Gerçekliği Ve Kontrol Yöntemleri”. Gıda 39, sy. 5 (Ekim 2014): 315-22. https://doi.org/10.15237/gida.GD14017.
EndNote Yeşilören G, Ekşi A (01 Ekim 2014) Gıda Gerçekliği ve Kontrol Yöntemleri. Gıda 39 5 315–322.
IEEE G. . Yeşilören ve A. . Ekşi, “Gıda Gerçekliği ve Kontrol Yöntemleri”, GIDA, c. 39, sy. 5, ss. 315–322, 2014, doi: 10.15237/gida.GD14017.
ISNAD Yeşilören, Gülen - Ekşi, Aziz. “Gıda Gerçekliği Ve Kontrol Yöntemleri”. Gıda 39/5 (Ekim 2014), 315-322. https://doi.org/10.15237/gida.GD14017.
JAMA Yeşilören G, Ekşi A. Gıda Gerçekliği ve Kontrol Yöntemleri. GIDA. 2014;39:315–322.
MLA Yeşilören, Gülen ve Aziz Ekşi. “Gıda Gerçekliği Ve Kontrol Yöntemleri”. Gıda, c. 39, sy. 5, 2014, ss. 315-22, doi:10.15237/gida.GD14017.
Vancouver Yeşilören G, Ekşi A. Gıda Gerçekliği ve Kontrol Yöntemleri. GIDA. 2014;39(5):315-22.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/